EECS/MechE/BioE C106A: Midterm 2 Review Session

The return of Prof. Tarun Amarnath!

Lab

- Make sure you're familiar with the basic setup operations!
- Nodes, topics, publishers, subscribers
- Creating packages, running programs
- Work done in labs (planning, tracking, mapping, etc.)

TF Tree, transforms, \& RVIZ

- Can perform transform between any two coordinate frames in TF tree using tf2
- How to code a transform

tfBuffer = tf2_ros.Buffer()
tfListener = tf2_ros.TransformListener(tfBuffer)
while not rospy.is_shutdown():
try:

break
except:
pass
- We can display a bunch of objects in RViz
- Tlmage, TF, Robot Model, Point, Marker

Labs - Fullstack Robotics

- Perception
- AR Tags - Forms a TF between camera and AR tags
- RGBD Cameras
- RGB vs HSV
- Path Planning

- Its ok be happy (don't worry about path planning for exam)
- Control
- Positional vs Velocity PID control
- Porptional Integral Derivative

All the Past Content...

Rigid Body Transformations

- Length and orientation preserving
- Represent a movement or a change in coordinate frame
- Rotations, translations, or both (screw motion)

Homogeneous Transformation Matrices

- Compact representation
- Both rotation and translation included
- Can stack and invert

$$
g=\left[\begin{array}{cc}
R & p \\
0 & 1
\end{array}\right] \quad g^{-1}=\left[\begin{array}{cc}
R^{T} & -R^{T} p \\
0 & 1
\end{array}\right]
$$

Exponential Coordinates

- Goal: Create rotation and homogeneous transformation matrices as a function of time
- Comes from solving a differential equation
- We only need information about how the object moves (time is a parameter that's plugged in)

$$
\begin{array}{cc}
g(t)=e^{\hat{\xi} t} g(0) & R(t)=e^{\hat{\omega t}} R(0) \\
\left(\xi, t^{7}\right) & (\omega, t)
\end{array}
$$

Forward Kinematics

- Goal: Find the location of the tool after a multi-joint robot arm has moved around
- Compose exp. coords

$$
g_{s t}\left(\theta_{1} \ldots \theta_{n}\right)=e^{\hat{y}_{i} \theta_{1}} \ldots e^{\hat{\xi}_{r} \theta_{n}} g_{s t}(0)
$$

Inverse Kinematics

- How do we move our robot's joints to reach a desired configuration?
- Use Paden-Kahan subproblems along with tricks (reduce problem down to simpler parts)

Computer Vision

Pinhole Camera Model

Two-View Geometry

Convolutions

- Slide a kernel over some image
- Understand some information about the picture

Velocities

What do we mean by them?

- Velocity in general is the rate of change with respect to some reference frame
- With robots, use a stationary frame
- Calculate the velocity of some point attached to the end effector wrt to the base

Some Important Considerations

- Spatial \& body velocities - just a coordinate shift, tells us which coordinate system to use
- Spatial and body velocities are twists $\rightarrow v^{s}, v^{b}=\left[\begin{array}{l}v \\ w\end{array}\right]$
- Generic expressions for any point \rightarrow how robot moves
- Can apply them to a specific point to determine that point's velocity

$$
r_{q}=\hat{V}_{A B}^{S} \mathrm{~Pa}_{a}
$$

Spatial Velocity

- Express our point in the spatial frame
$\rightarrow A$ fame spatial

$$
\begin{aligned}
& \frac{d}{d t} \\
& \underset{\text { frames }}{\text { frames }}\left(q_{a}(t)\right.=g_{a b} \cdot q_{b} \\
& r_{q_{a}}(t)=\underbrace{\dot{q}_{a b}(t)}_{\hat{v}_{s}} \dot{g}_{a b}^{-1} q_{a}
\end{aligned}
$$

$$
\widehat{V}_{a b}^{s}:=\dot{g}_{a b} g_{a b}^{-1}=\left[\begin{array}{cc}
\dot{R}_{a b} R_{a b}^{T} & -\dot{R}_{a b} R_{a b}^{T} p_{a b}+\dot{p}_{a b} \\
0 & 0
\end{array}\right] \quad V_{a b}^{s}=\left[\begin{array}{c}
v_{a b}^{s} \\
\omega_{a b}^{s}
\end{array}\right]=\left[\begin{array}{c}
-\dot{R}_{a b} R_{a b}^{T} p_{a b}+\dot{p}_{a b} \\
\left(\dot{R}_{a b} R_{a b}^{T}\right)^{v}
\end{array}\right]
$$

Body Velocity

- Point is expressed in terms of the body frame

$$
\begin{gathered}
v_{q_{b}}(t)=\underbrace{g_{a b}^{-1}(d) \dot{g}_{a b}(t)}_{\hat{V}_{a b}^{b}} q_{b} \\
\hat{V}_{a b}^{b}:=g_{a b}^{-1}(t) \dot{g}_{a b}=\left[\begin{array}{cc}
R_{a b}^{T} \dot{R}_{a b} & R_{a b}^{T} \dot{p}_{a b} \\
0 & 0
\end{array}\right] \quad V_{a b}^{b}=\left[\begin{array}{c}
v_{a b}^{b} \\
\omega_{a b}^{b}
\end{array}\right]=\left[\begin{array}{c}
R_{a}^{T} \dot{p}_{a b} \\
\left(R_{a b}^{a b} \dot{R}_{a b}\right)^{v}
\end{array}\right]
\end{gathered}
$$

Interpreting Velocities as Twists

- Can break them apart into v and w components
- Calculate each one separately

Quantity	Interpretation
$\omega_{a b}^{s}$	Angular velocity of B wrt frame A, viewed from A.
$v_{a b}^{s}$	Velocity of a (possible imaginary) point attached to B traveling through the origin of A wrt A, viewed from A.
$\omega_{a b}^{b}$	Angular velocity of B wrt frame A, viewed from B.
$v_{a b}^{b}$	Velocity of origin of B wrt frame A, viewed from B.

Adjoints

What are they?

- Like a g matrix for twists!
- Change coordinate frames if we have a twist
- Because velocities are also twists, we can use adjoints to switch between spatial and body velocities

$$
\begin{aligned}
\widehat{\xi}^{\prime} & =g \widehat{\xi} g^{-1} \\
\xi^{\prime} & =A d_{g} \xi
\end{aligned}
$$

Formulas

$\left[\begin{array}{cc}R_{a b} & \widehat{p}_{a b} R_{a b}\end{array}\right.$ $R_{a b}$

$:=A d_{g_{a b}}$

$$
\begin{aligned}
& V_{a c}^{s}=V_{a b}^{s}+A d_{g_{a b}} V_{b c}^{s} \\
& V_{a c}^{b}=A d_{g_{b c}^{-1}} V_{a b}^{b}+V_{b c}^{b}
\end{aligned}
$$

$$
A d_{g_{a b}}^{-1}=\left[\begin{array}{cc}
R_{a b}^{T} & -R_{a b}^{T} \widehat{p} \\
0 & R_{a b}^{T}
\end{array}\right]
$$

$$
\begin{aligned}
& A d g_{a b} \cdot A_{d} g_{b c} \\
& =A d\left(g_{a b} g_{b c}\right)
\end{aligned}
$$

Jacobians and Singularities

Motivation

- We want to get the velocity of our end effector
- However, our sensors give us the velocities of our links
- Jacobian allows us to go from link velocities \rightarrow end effector velocity

Spatial Jacobian

- Gets us to the spatial velocity

- Columns of the Jacobian:
- Twists of each of the links of the robot
- In their current positions (i.e. not at 0 position, unlike FK)
- Expressed in spatial coordinates
- Column represents derivative of end effector position wrt each of the links

Formulas

$$
\begin{aligned}
J_{s t}^{s}(\theta) & =\left[\begin{array}{lll}
\left(\frac{\partial g_{s t}}{\partial \theta_{1}}\right)^{\vee} & \ldots & \left(\frac{\partial g_{s t}}{\partial \theta_{n}}\right)^{\vee}
\end{array}\right] \\
& =\left[\begin{array}{llll}
\xi_{1} & \xi_{2}^{\prime} & \ldots & \xi_{n}^{\prime}
\end{array}\right] \\
\xi_{i}^{\prime} & =A d_{\left(e^{\hat{\epsilon}_{1} \theta_{1} e_{1}} . e^{\hat{\varepsilon}_{i-1} \theta_{i-1}}\right)} \xi_{i}
\end{aligned}
$$

Body Jacobian

body velocits

- Analogous to spatial Jacobian
- Gets us the body velocity, instead of the spatial velocity
- Each of the twists are represented in the body frame instead

$$
\begin{gathered}
J_{s t}^{b}(\theta)=\left[\begin{array}{llll}
\xi_{1}^{\dagger} & \xi_{2}^{\dagger} & \ldots & \xi_{n}^{\dagger}
\end{array}\right] \\
\xi_{i}^{\dagger}=A d_{\left(e^{-\tilde{\xi}_{i+1} \theta_{i+1} \ldots} \ldots e^{\xi_{n} \theta_{n} g_{s t}(0)}\right)}^{-1} \xi_{i} \\
v_{q_{b}}=\widehat{V}_{s t}^{b} q_{b}=\left(J_{s t}^{b}(\theta) \dot{\theta}\right)^{\wedge} q_{b}
\end{gathered}
$$

Conversion

- Jacobians are composed of twists
- Can use the adjoint to move between them!
- Adjoint is invertible, can go the other way as well

$$
J_{s t}^{s}(\theta)=A d_{g_{s t}(\theta)} J_{s t}^{b}(\theta)
$$

Finding the Jacobian

- Can find the twists making up the columns directly by ${ }^{\circ}$ 이 finding and applying adjoint transformation

- Alternatively, we can calculate the new positions of each of the v and w components that make up the twists

$$
\begin{aligned}
& \text { Frid new } w, w^{\prime} \\
& \text { F Find } n \text { new } q, q^{\prime} \\
& \xi=\left[\begin{array}{c}
-w^{\prime}+q^{\prime} \\
w^{\prime}
\end{array}\right]
\end{aligned}
$$

Singularities

$$
V_{s t}^{s}=J_{s t}^{s}(\theta) \dot{\theta}
$$

- Jacobian drops in rank

- We can't reach all of the velocities that we should be able to no matter what we set each of our link velocities to
- This is a singular configuration
- Would prefer to avoid being in it or near it

- Can't achieve instantaneous motion in certain directions
- Could require significant amounts of force in certain directions around that area
- Mess up error tracking

Dynamics

Forces!

- In real life, we're trying to control our robot by applying some force to its joints
- Need to get the dynamics of our system
- The forces in each direction so that we know exactly what to apply to achieve our trajectory

Use Energy!

- Forces can be difficult

- When there are multiple reference frames, particularly rotating ones, in play
- End up with many complicated terms
- Sometimes have several "imaginary" forces to balance equations'
- Energy is nice!
- Scalars
- Only depends on current state of the object
- Zinizaizantercoordinate frame - choose any one

$$
\begin{aligned}
& \text { Doesu't matier which coord frame chosen } \\
& \text { (stay consistent) }
\end{aligned}
$$

Method

1. Choose state
2. Kinetic energy \rightarrow use q, \dot{q}
3. Potential energy
4. Lagrangian $L=T-V$
5. Equations of motion (convert to forces)

$$
\underline{V}=\frac{d}{d t} \frac{d L}{d \dot{q}}-\frac{d L}{d q}
$$

State

- Depends on the problem at hand
- Choose minimal representation needed or the representation that makes it easiest to determine what forces to apply
- Usually p, theta, or something similar
$b x, y$

Kinetic Energy

- Translational

$$
\begin{array}{ll}
z & v^{y}=\left[\begin{array}{c}
0 \\
0 \\
60
\end{array}\right] \\
\sqrt{5} y & v^{5}=\left[\begin{array}{c}
0 \\
60 \\
0
\end{array}\right]
\end{array}
$$

- Rotational

$$
\begin{aligned}
& \frac{1}{2} \omega^{T} I \omega \\
& \frac{1}{2} I \dot{\theta}^{2} \rightarrow \text { simpler }
\end{aligned}
$$

Potential Energy

- Gravitational
$m g_{n}^{h}$
L weight from 0 position of our chosen
coord frame
- Spring

$$
\frac{1}{2} k x^{2}
$$

Lagrangian

$$
\begin{aligned}
& \text { \& Scalar } \\
& L-T-V=\sum T \quad \sum V=\frac{1}{2}=\left(6 \sigma^{2}\right. \\
& L=T-V=\sum T_{i}-\sum V_{i}{ }_{2}=\text { matt }
\end{aligned}
$$

Equations of Motion

Separation (Optional)

Control

Dynamical Systems

$$
\dot{x}=f(x, u)
$$

- Equations used to represent our system based on current state and input
- Often in the form of a differential equation
- Generated with knowledge of dynamics
- State evolves as a result of forces
- Input is the forces we add into the system
- Equal Point: $x=0$

Linearization

$$
\begin{aligned}
& \text { On } \\
& \dot{x}=f(x, u) \xrightarrow{\text { convert to a linear system }} \quad \dot{x} \approx A \Delta x+B \Delta u+f(\bar{x}, \bar{u})
\end{aligned}
$$

 le function as linear in a small area

$$
f(x, u) \approx \underbrace{\left.\frac{d f}{d x}\right|_{\bar{x}, \bar{u}}(x-\bar{x})+\left.\frac{d f}{d u}\right|_{\bar{x}, \bar{u}}(u-\bar{u})}_{\begin{array}{c}
\text { Like our } \\
\text { slope }
\end{array}}+f(\bar{x}, \bar{u})
$$

LTI Systems

$$
\dot{x}=A x+B u
$$

Assume FLOG $x_{0}=\left[\begin{array}{l}0 \\ 0\end{array}\right]$
Controllability

$$
\dot{x}=A x+B n
$$

$$
\begin{array}{rlrl}
x_{1} & =A x_{0}+B u_{1} & & x_{3}=A x_{2}+B u_{3} \\
& =B u_{1} \\
x_{2} & =A x_{1}+B u_{2} & =A\left(A\left(B u_{1}\right)+B u_{2}\right) \\
& =A\left(B u_{1}\right)+B u_{2} & & =A^{2} B u_{1}+A B u_{2}
\end{array}
$$

Can we get our system to behave the way ${ }^{=} A^{2} B u_{1}+A B u_{2}$ want?

Controllability Matrix: $\quad Q=\left[\begin{array}{llll}B & A B & \cdots & A^{n-1} B\end{array}\right]$
Controllable wither the span of Q
Q full rank: fully controll able
we can get system
to go from

$$
\left[\begin{array}{l}
4 \\
5
\end{array}\right] \rightarrow\left[\begin{array}{l}
7 \\
8
\end{array}\right]
$$

ex.

$$
\operatorname{span}(Q)=\left\{\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right\}
$$

we conic

$$
\left[\begin{array}{l}
4 \\
5
\end{array}\right] \rightarrow\left[\begin{array}{l}
4 \\
4
\end{array}\right] \begin{aligned}
& x_{f}-x_{i} \\
& \text { is not in } \\
& \text { span }(Q)
\end{aligned}
$$

Stability
LTI system $\dot{x}=A x+B u$ stable:
All $\operatorname{Re}(\operatorname{eig}(A))<0$

Stabilizable if $; \quad$ is controllable in the direction of the eigenvectors w/ nonnegative eigenvalues

PID Control

- Used to error correct and can follow trajectory to some small extent
- Model-free control - only need to know error, not system equations

The Terms

- Proportional
- Workhorse
- Applies input that pulls state towards desired trajectory
- Derivative
- Dampens proportional response
- Prevents oscillation and overcorrection
- Allows for convergence
- Integral
- Corrects steady-state error because of constant forces like g

Feedback Linearization

- Incorporate error into the input term of a linear system
- Set up the equations so that error converges to 0

Calculate Spatial + Body Velocity

Show that a manipulator with 4 intersecting joints will have a singularity.
$H_{i_{3}}^{i_{i} i_{2}}$
WLOG, assume these counts are E
${ }_{\sim}^{\text {argon }}{ }_{\square}-\omega \times q=-\omega r 0=0$

Calculate the dynamics

Figure 1: Image sourced from http://www.dzre.com/alex/P441/lectures/lec_18.pdf
(1) $q=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$
(2) KE Ramp moving $\rightarrow \frac{1}{2} M \dot{x}_{1}^{2}$

Object moving \rightarrow velocities from $\dot{x}_{1} \& \dot{x}_{2}$

$$
\begin{aligned}
& v_{\hat{x}}=\dot{x}_{1}+\dot{x}_{2} \cos \theta \\
& v_{\hat{y}}=\dot{x}_{2} \sin \theta
\end{aligned}
$$

$$
T=T_{m}+T_{m}
$$

(3) PE: box on ramp

$$
V_{g}=-m g(\underbrace{x_{2} \sin \theta}_{\text {height }})
$$

(4) Lagrangian

$$
\begin{aligned}
L & =T-V \\
& =T_{m}+T_{m}-V \\
& =\frac{1}{2} M \dot{x}_{1}^{2}+\frac{1}{2} m\left(\dot{x}_{1}^{2}+2 \dot{x}_{1} \dot{x}_{2} \cos \theta+\dot{x}_{2}^{2}\right)+m g x_{2} \sin \theta
\end{aligned}
$$

(5)

$$
\begin{aligned}
& \gamma=\frac{d}{d t} \frac{d L}{d \dot{q}}-\frac{d L}{d q} \\
& \frac{d L}{d \dot{x}_{1}}=M \dot{x}_{1}+m \dot{x}_{1}+m \dot{x}_{2} \cos \theta \rightarrow \frac{d}{d t}=M \ddot{x}_{1}+m \ddot{x}_{1}+m \ddot{x}_{2} \cos \theta \\
& \frac{d L}{d \dot{x}_{2}}=m \dot{x}_{1} \cos \theta+m \dot{x}_{2} \rightarrow \frac{d}{d t}=m \ddot{x}_{1} \cos \theta+m \ddot{x}_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d L}{d x_{1}}=0 \quad \frac{d L}{d x_{2}}=m g \sin \theta \\
& {\left[\begin{array}{l}
\Upsilon_{x_{1}} \\
r_{x_{2}}
\end{array}\right]=\left[\begin{array}{l}
m \ddot{x}_{1}+m \ddot{x}_{1}+m \ddot{x}_{2} \cos \theta \\
m \ddot{x}_{1} \cos \theta+m \ddot{x}_{2}+m g \sin \theta
\end{array}\right]}
\end{aligned}
$$

Say we have a system with $x_{1}, x_{2}, u_{1}, u_{2}$. Linearize the system at an equilibrium point of $(0,0)$, and analyze the stability and controllability:

$$
\begin{aligned}
& \dot{x_{1}}=2 x_{1}^{2}+3 x_{2}+u_{1}^{2}=f_{1} \\
& \dot{x_{2}}=\sin x_{1}+x_{2}=f_{2} \\
& f(x, u)-f(\bar{x}, \bar{u})=\left.\delta f \approx \frac{\partial f}{\partial x}\right|_{x=\bar{x}}(x-\bar{x})+\left.\frac{\partial f}{\partial u}\right|_{\substack{x=\bar{x} \\
u=\bar{u}}} ^{(u-\bar{u})}
\end{aligned}
$$

$$
\frac{\partial f}{\partial u}=\left[\left.\begin{array}{ll}
\frac{\partial f_{1}}{\partial u_{1}} & \frac{\partial \delta_{1}}{\partial u_{2}} \\
\frac{\partial f_{2}}{\partial u_{1}} & \frac{\partial f_{2}}{\partial u_{2}}
\end{array}\right|_{\substack{x=\bar{x} \\
u=\frac{\bar{u}}{u}}}=\left[\left.\begin{array}{ll}
2 u_{1} & 0 \\
0 & 0
\end{array}\right|_{\substack{x=\bar{x} \\
u=\frac{u}{u}}}=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]\right.\right.
$$

$$
\begin{aligned}
& \dot{x}_{1}=2 x_{1}^{2}+3 x_{2}+2 u_{1}=f_{1} \\
& \dot{x}_{2}=\sin x_{1}+x_{2}=f_{2}
\end{aligned}
$$

$$
\begin{aligned}
& f(x, u)-f(\bar{x}, \bar{u})=\left.\delta f \approx \frac{\partial f}{\partial x}\right|_{x=\bar{x}}(x-\bar{x})+\left.\frac{\partial f}{\partial u}\right|_{\substack{x=\bar{x} \\
u=\bar{u}}} ^{(u-\bar{u})} \\
& \left.\frac{\partial f}{\partial x}\right|_{\substack{x=\bar{x} \\
u=\bar{u}}} ^{\left[\begin{array}{ll}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} \\
\frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}}
\end{array}\right]}=\left.\right|_{\substack{x=\bar{x} \\
u=\bar{u}}}=\left.\left[\begin{array}{ll}
4 x_{1} & 3 \\
\cos x_{1} & 1
\end{array}\right]\right|_{\substack{x=\bar{x}=0 \\
u=\bar{u}=0}}=\left[\begin{array}{ll}
0 & 3 \\
1 & 1
\end{array}\right] \\
& \left.\frac{\partial f}{\partial u}\right|_{\substack{x=\bar{x} \\
u=\bar{u}}}=\left[\begin{array}{ll}
\frac{\partial f_{1}}{\partial u_{1}} & \frac{\partial f_{1}}{\partial u_{z}} \\
\frac{\partial f_{2}}{\partial u} & \frac{\partial f_{2}}{\partial u_{z}}
\end{array}\right]=\left[\left.\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right|_{\substack{x=\bar{x}=0 \\
u=\bar{u}=0}}=\left[\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right]\right.
\end{aligned}
$$

Final linearization:

$$
\begin{aligned}
& \delta f=f-\bar{f}=f \approx\left[\begin{array}{ll}
0 & 3 \\
1 & 1
\end{array}\right](x-\bar{x})+\left[\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right](u-\bar{u}) \\
& 0 \\
& {\left[\begin{array}{l}
x_{1}-\bar{x}_{1} \\
x_{2}-\bar{x}_{2}
\end{array}\right]=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] }
\end{aligned}
$$

Stability

$$
\begin{array}{r}
(0-\lambda)(1-\lambda)-(3)(1)=0 \quad \frac{1 \pm \sqrt{1-4(1)(-3)}}{2} \\
0-\lambda+\lambda^{2}-3=0 \quad \lambda=\frac{1 \pm \sqrt{13}}{2} \\
\longrightarrow \text { Unstable b/c we have a }
\end{array}
$$ nonnegative eigenvalue

Controllability

$$
\begin{aligned}
& n=2 \quad \text { (we have } 2 \text { states) } \\
& Q=\left[\begin{array}{ll}
B & A B
\end{array}\right] \\
& B=\left[\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right] \\
& A B=\left[\begin{array}{ll}
0 & 3 \\
1 & 1
\end{array}\right]\left[\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
2 & 0
\end{array}\right] \\
& a=\left[\begin{array}{llll}
2 & 0 & 0 & 0 \\
0 & 0 & 2 & 0
\end{array}\right]
\end{aligned}
$$

$$
\text { Rank }=2
$$

Fully rank \Rightarrow Fully controllable!
Stabilizability
Can we stabilize in the direction of the eigenvector (s) w/ positive eigenvalues)? \rightarrow can apply control input to keep system stable \longrightarrow YES b/c we are fully controllable (a is full rank)

Calculate a control law that causes error to go to 0

Solve for input force that achieves \ddot{x}_{d}
\downarrow
Add feedback term for error correction

$$
\left\{\begin{array}{l}
F_{\text {input }}=m \ddot{x}_{d}-m g+k x+m\left(k_{p} e+k_{d} \dot{e}\right) \\
\int_{\Delta} m \ddot{x}=m g-k x+\left(m \ddot{x}_{d}-m g+k_{x}+m\left(k_{p} e+k_{d} \dot{e}\right)\right)
\end{array}\right.
$$

$$
\begin{aligned}
& =m \ddot{x}_{d}-m \ddot{x}+m\left(k_{p} e+k_{d} \dot{e}\right) \\
0 & =m\left(\ddot{e}+k_{p} e+k_{d} \dot{e}\right) \\
& \downarrow
\end{aligned}
$$

error will converge to

