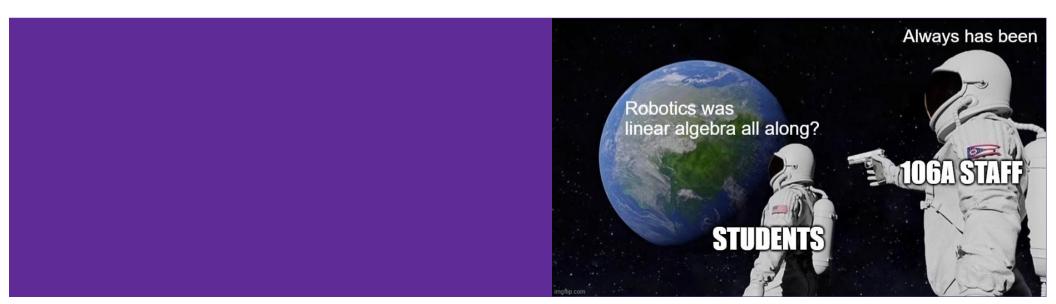
EECS/MechE/BioE C106A: Midterm 1 Review Session

Presented by Tarun Amarnath



Rigid Body Transformations

Rigid Body Transformations

- The forms of movement we discuss in this class
- 2 important qualities:
 - Length preserving

$$||g(p) - g(q)|| = ||p - q||$$

• Orientation preserving

$$g(v \times w) = g(v) \times g(w)$$

Rotations

1st Rigid Body Transform: Rotations

- Let's say we have a world frame {A}
- There's a body attached to it {B} with its own orientation
- Rotation matrix represents the axes of {B} in terms of the Units UI [A] U y_{A} $R_{AB} = \begin{bmatrix} x_{AB} & y_{AB} \end{bmatrix}$ y_{B} $\begin{bmatrix} y_{B} \\ x_{A} \end{bmatrix}$ y_{A} $\begin{bmatrix} x_{AB} & y_{AB} \end{bmatrix}$ y_{-axis} of frame B in terms of Frame A axes of {A}

(3) Q = KAB ZB 6 Represent a pt in

Rotations about World Axes

$$R_x(\theta) = \begin{bmatrix} 1 & 0 & 0\\ 0 & \cos(\theta) & -\sin(\theta)\\ 0 & \sin(\theta) & \cos(\theta) \end{bmatrix} = e^{\hat{x}\theta}$$

$$R_{y}(\theta) = \begin{bmatrix} \cos(\theta) & 0 & \sin(\theta) \\ 0 & 1 & 0 \\ -\sin(\theta) & 0 & \cos(\theta) \end{bmatrix} = e^{\hat{y}\theta}$$

$$R_{z}(\theta) = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0\\ \sin(\theta) & \cos(\theta) & 0\\ 0 & 0 & 1 \end{bmatrix} = e^{\hat{z}\theta}$$

Rodrigues' Formula

• Rotation about some **generic axis** *w* (not necessarily a world axis) by

$$R(w, 0) = e^{\int_{-\infty}^{\infty} \theta} = I + \hat{w} \sin \theta + \hat{w}^{2} (1 - \cos \theta)$$

$$E \int_{0}^{\infty} (3)$$

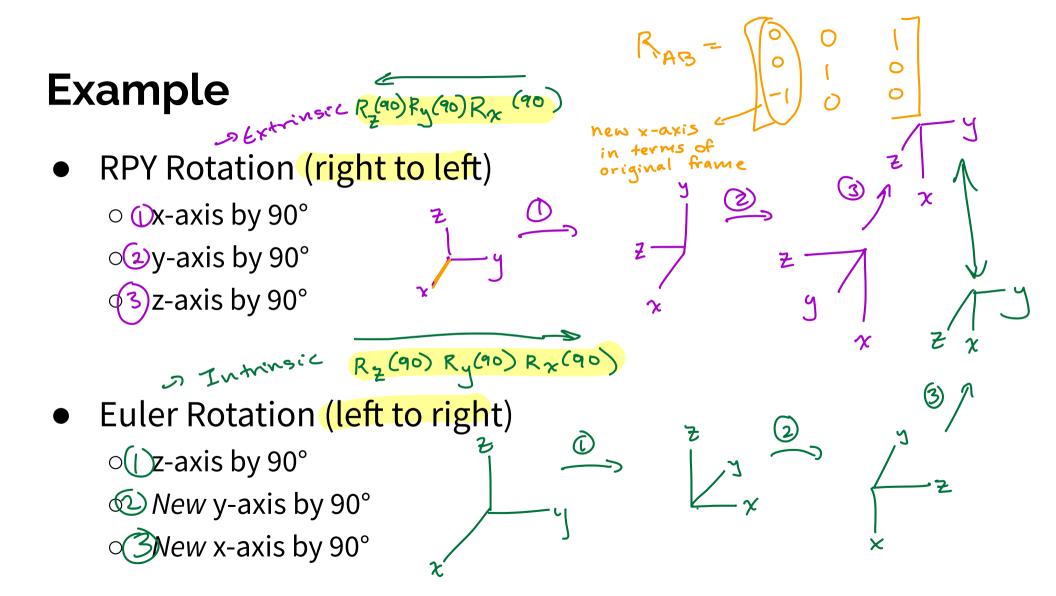
Skew-symmetric matrix:

$$\int_{w}^{\infty} = \begin{bmatrix} 0 & -w_{2} & w_{1} \\ w_{2} & 0 & -w_{0} \\ -w_{1} & w_{0} & 0 \end{bmatrix} \in Ao(3)$$

Intrinsic (Euler) vs. Extrinsic (RPY) Rotations

- Intrinsic rotate based on axes of **body** frame
 - Write this out from right to left left to right
- Extrinsic rotate based on **world** axes
 - Write this out from left to right right to (eff

• **Equivalent**, depending on how you read a composition



Special Orthogonal Matrices

• 3D rotation matrices fall into the SO(3) **group**

Definition:

$$SO(3) = \left\{ R \in \mathbb{R}^{3 \times 3} | R^T R = I, \det R = 1 \right\}$$
and

$$SO(n) = \left\{ R \in \mathbb{R}^{n \times n} | R^T R = I, \det R = 1 \right\}$$

• Orthogonal matrices that follow the right-hand rule

$$R^{T} = R^{-1}$$

Groups

- Multiplication maps into itself $R_1 \cdot R_2 \rightarrow rotation$
- Identity operative

• Inverse

$$g \cdot g^{-1} = g^{-1} \cdot g = i$$

 $g_1 \cdot g_z \in G$

• Associativity

$$g_1(g_2 \cdot g_3) = (g_1 \cdot g_2) \cdot g_3$$

Rotation and Translation

General Rigid Body Transformations

- **Goal:** express rotation and translation
- (points translate, vectors simply rotate)

$$G = R \cdot \chi + P$$

 $F = R \cdot \chi + P$
Rotate & translate

Points have a l Vecs have a D

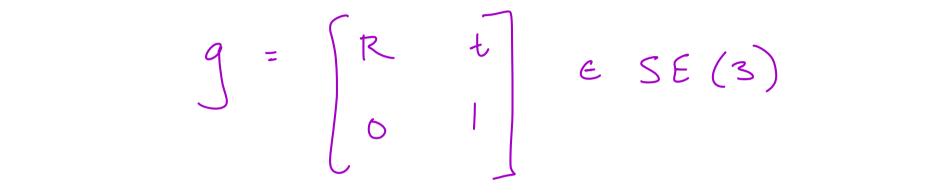
• Homogeneous coordinates:

$$P = \begin{bmatrix} P_{Y} \\ P_{Z} \\ P_{Z} \end{bmatrix} = \begin{bmatrix} V_{Y} \\ V_{Z} \\ V_{Z} \end{bmatrix}$$

Homogeneous Transformation Matrices

 $g \cdot P = \begin{bmatrix} R & t \\ 0 & 1 \end{bmatrix} \begin{bmatrix} P \\ 1 \end{bmatrix}$ **Compact** representation Both rotation and translation included $= \begin{bmatrix} RP+b \\ 1 \end{bmatrix}$ $g = \begin{bmatrix} e^{\pi^{3^{*}}} & t^{e^{\pi^{3^{*}}}} \\ R & t^{e^{\pi^{3^{*}}}} & e^{\pi^{3^{*}}} \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} e^{\pi^{3^{*}}} & g \end{bmatrix}$ $g:v \in \begin{bmatrix} R & t \\ 0 & 1 \end{bmatrix} \begin{bmatrix} v \\ 0 \end{bmatrix}$ Can stack and invert $g_{AC} = g_{AB} g_{BC}$ $g_{AC} = g_{CA}^{-1}$ $g_$

SE(3) is a group

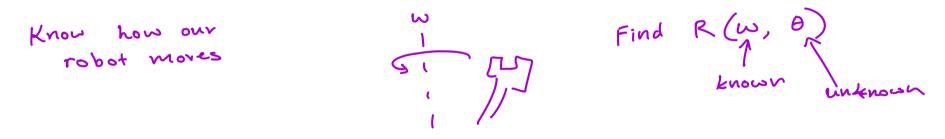


 $SE(3) = \begin{cases} \begin{bmatrix} R & t \\ 0 & l \end{bmatrix} \in \mathbb{R}^{4\times 4} \\ t \in \mathbb{R}^{3}, Reso(3) \end{cases}$

Exponential Coordinates

Exponential Coordinates

• **Goal:** Create rotation and homogeneous transformation matrices as a *function of time*



- Comes from solving a differential equation $\rightarrow p(t) = A p(t)$
- We only need information about how the object moves

 (time is a parameter that's plugged in)
 P(t) = e^{At}_P(o)

Exp. Coordinates for Rotation Matrices

• Axis of rotation creates a *rotation matrix*

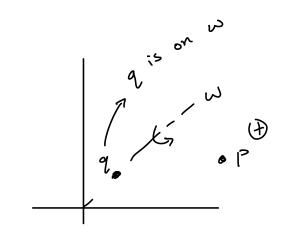
$$R(t) = \underset{\downarrow}{\overset{\omega}{}} R(0)$$

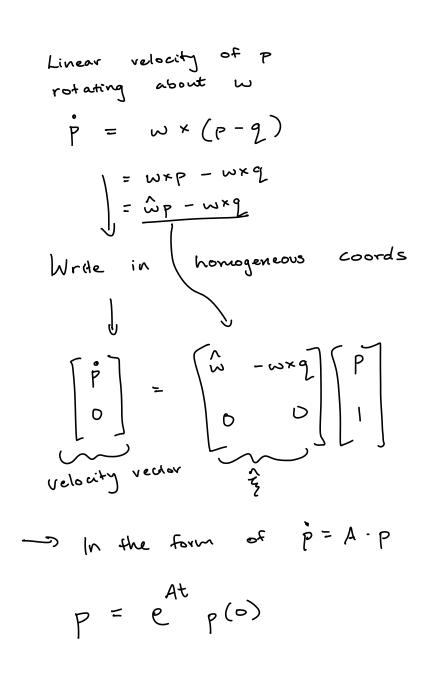
$$H Use Rodrigues Formula$$

$$Exp. coords = (\omega, 0)$$

$$H Use Rodrigues Tormula$$

||w||=1: 0=t





Exp. Coords for General Rigid Body Motion

- - Pure translation:

₹=) V 0

Reference Formulas

- Rotation and Translation $e^{\hat{\boldsymbol{\xi}}\boldsymbol{\theta}} = \begin{bmatrix} e^{\hat{\boldsymbol{\omega}}\boldsymbol{\theta}} & (\mathbb{I}_3 - e^{\hat{\boldsymbol{\omega}}\boldsymbol{\theta}}) & (\boldsymbol{\omega} \times \boldsymbol{v}) + \boldsymbol{\omega}\boldsymbol{\omega}^T \boldsymbol{v}\boldsymbol{\theta} \\ \mathbf{0} & 1 \end{bmatrix}$
- Pure Translation

$$e^{\hat{\boldsymbol{\xi}}\boldsymbol{\theta}} = \begin{bmatrix} \mathbb{I}_3 & \boldsymbol{v}\boldsymbol{\theta} \\ \mathbf{0} & 1 \end{bmatrix}$$

More on Screw Motion

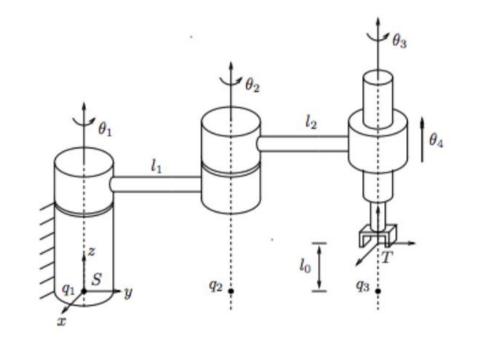
- > Chasles Theorem Any rotation + translation can be expressed as a screw about a single axis
- Axis w
- Magnitude of rotation
- Pitch *h* (ratio of translation : rotation)
 - h = 0: pure rotation Ο
 - h = infinite: pure translation Ο

(0,0,0) '(0,0,0) $\xi = \begin{bmatrix} -\omega \times 2 \\ \omega \end{bmatrix}$ $\omega = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad \begin{array}{c} q = \begin{bmatrix} 0 \\ 0.5 \end{bmatrix}$

Forward Kinematics

Multi-Link Arms

• **Goal:** Find the location of the tool after a multi-joint robot arm has moved around

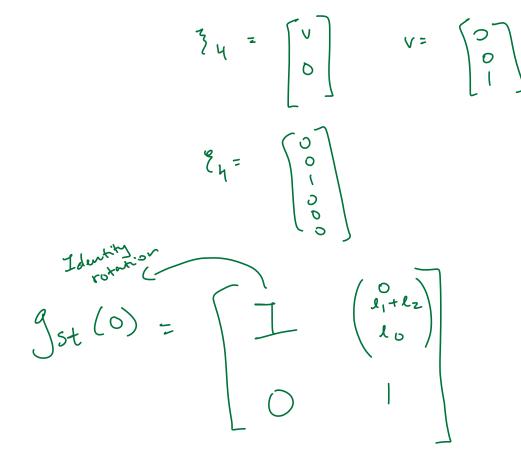


Composition of Twists

- 1. Find twists of each joint in the reference configuration
 - All joint angles are 0
 - All vectors expressed in the *world frame*
- 2. Find starting position of tool
- 3. Put it together in exponential coordinates

$$e^{\frac{1}{2}}0_1$$
, $\frac{1}{2}2^{0_2}$, $\frac{1}{2}n^{0_n}$, $\frac{1}{3}st(0) = g_{st}(0, \dots, 0_n)$





Notes

- Order matters: joints on the right cannot affect the position of joints on the left $\not\rightarrow$ write $\Theta_{i} \rightarrow \Theta_{i}$
- Forward kinematics (calculated using the world frame) will deliver the **same result** as composing homogeneous transformation matrices (see Discussion 3, Problem 3)

Inverse Kinematics

The Goal

- How do we move our robot's joints to reach a desired configuration?
- Given:
 - Where we want to go = 92
 - Details about the robot
 - Twists = $\xi_1 \cdots \xi_n$
 - Starting Configuration —

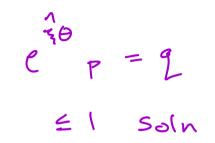
• Desired: $\partial_1 \cdots \partial_n$

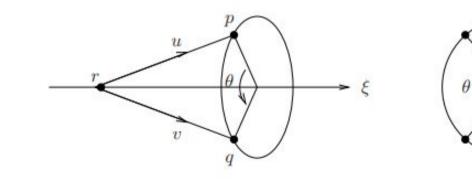
Padan-Kahan Subproblems

- We have proven the solutions to some basic inverse kinematics problems
- Can we reduce our much more complicated robotics problem down to these?

Subproblem 1

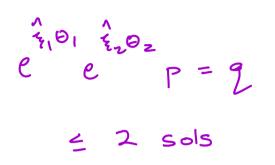
- Rotation about some fixed axis
 We specify (p, q)
 - Find theta
- = 1 solution

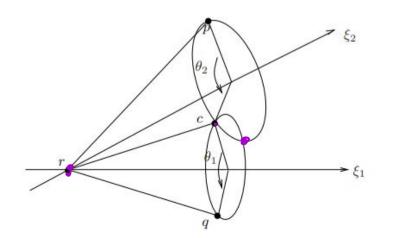




Subproblem 2

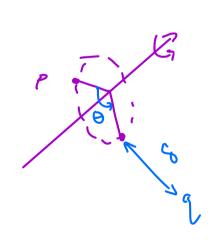
- Rotate about 2 intersecting axes
 - We specify (p, q)
 - \circ Find theta
- <= 2 solutions





Subproblem 3 A Only revolute joints

- Move to a specified distance from another point
 - Specify (p, q, delta)
 - Find theta
- <= 2 solutions



|| eⁱ p - q || = S

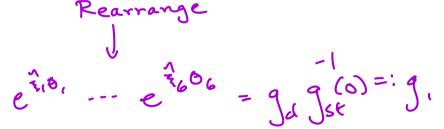
$$\leq 2$$
 solutions
Prismatic joint solution can take
this form, but need to use
this form, to solve

Extrapolating

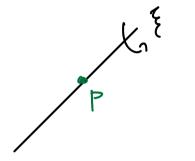
- We know we can solve these simple IK problems to find theta
- But what about the complex robot arm?

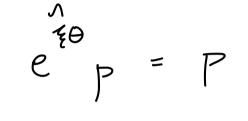
$$e^{\frac{1}{2},\Theta}$$
 $e^{\frac{1}{2},\Theta}$ $e^{\frac{1}{2},\Theta}$ $g_{st}(0) = g_{d}$

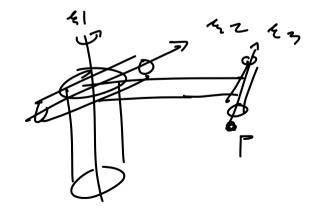
- Solution: repeatedly apply subproblems using convenient points
- Some tricks to help us out



Trick #1: Eliminate on the RHS

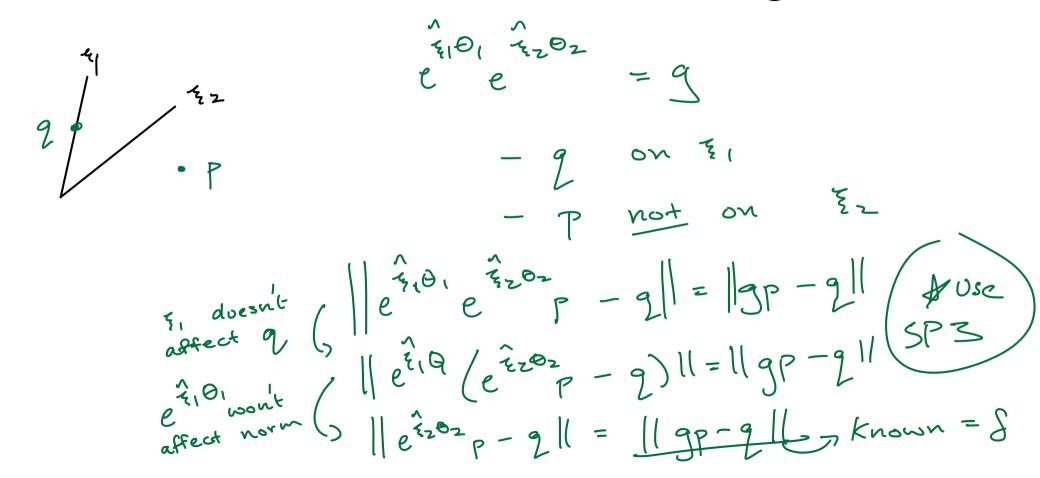






 $\hat{z}_1 \theta_1$ $\hat{z}_2 \theta_2$ $\hat{z}_3 \theta_3$ $e e e e p = g \cdot P$ $-p \text{ is on } \overline{2}-3$ $\hat{z}_{1} = \hat{z}_{2} = \hat{z}_{2} = p = gp$ -> Subproblem 2

Trick #2: Eliminate on the LHS Using Norms



Trick #3: Prismatic Joints

Get inta S form: $\|e^{i\theta}p - q\| = \delta$ S = lo + O moved the prismatic joint dist.

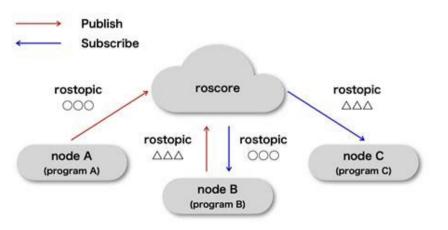
Lab Content

ROS Overview

- Meta-operating system for a robot
- Hardware abstraction and message passing between nodes
- Things to know:
 - Computation graph
 - How the file system looks
 - Workspace vs Package
 - Where do we place them
 - Where do packages store msg/srv definitions
 - Basic commands (ex. catkin_make)

ros_workspaces lab1 build devel setup.bash src CMakeLists.txt foo CMakeLists.txt package.xml bar CMakeLists.txt package.xml

. . . .



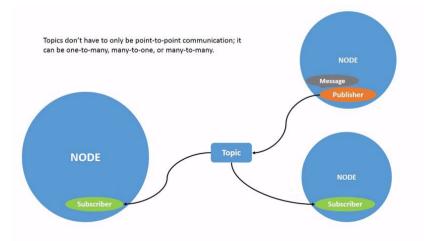
Publishers and Subscribers

- Publishers post messages on topics, subscribers read topic
- Asynchronous, fast, One-to-many
- Things to know:
 - ROS message definitions
 - How to view various information (rostopic list/echo/etc.)
 - Python code
 - You won't have to write your own, but fill-in-the-blank is definitely possible

My_msg_defn.msg

. . .

<<pre><< data_type1 >> << name_1 >>
<< data_type2 >> << name_2 >>
<< data_type3 >> << name_3 >>



Basic Pub Sub Code

Publisher

```
def my_pub():
    # Topic Name Msg Type Queue Size
    pub = rospy.Publisher('/my_topic', String, queue_size=10)
    r = rospy.Rate(10) # Run node at 10hz
```

```
# Loop until the node is killed with Ctrl-C
while not rospy.is_shutdown():
    pub_msg = String()
    pub_msg.message = "Hello World!"
    pub.publish(pub_msg)
    r.sleep()
```

```
if __name__ == '__main__':
    rospy.init_node('my_pub', anonymous=True)
    my_pub()
```

Subscriber

```
def my_callback(recieved_message):
    print((recieved_message.message))
```

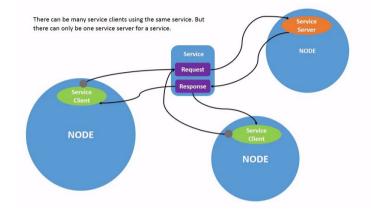
```
def my_sub():
```

Topic Name Msg Type Callback func rospy.Subscriber("/my_topic", String, my_callback) # Prevents node from exiting until this program is stopped rospy.spin()

```
if __name__ == '__main__':
    rospy.init_node('my_sub', anonymous=True)
    my_sub()
```

Services, Requests, and Clients

- Synchronous and One-to-one
- Server offers service
- Client calls that service
- Like synchronous function calls
 - Image you, a client, visits google.com
 - Client requests, waits for response
 - Server fulfills request and responds
 - Client processes response



More ROS Stuff to Know

- Things to know
 - General Python file structure
 - How to run Python files (rosrun pkg file)
 - Make requests from command line (rosservice call ...)

SNL/UNIVERSAL TELEVISION

ANY QUESTIONS?