
Lab 8: Fullstack Robotics - Perception, Planning, and Control ∗

EECS/ME/BIOE C106A/206A Fall 2023

Goals

By the end of this lab you should be able to:

• Build a perception pipeline to detect the position of a brightly colored goal object.

• Use the goal position to create a trajectory to the object using a path planner

• Have the Turtlebot execute the trajectory with a PID controller

Contents

1 Introduction 2
1.1 Starter Code . 2

2 Perception 2
2.1 The Realsense Camera . 2
2.2 Starting up the Realsense Camera . 2
2.3 Finding a Goal Position . 3
2.4 The Camera Instrinsics . 3
2.5 Finding the Cup: Color Thresholding . 3

2.5.1 Basics of Color Thresholding . 3
2.5.2 Convert to the Right Color Space: . 3
2.5.3 Thresholding . 4
2.5.4 Post-Processing . 4

2.6 Camera Projection . 5
2.7 How did we Derive the Projection Equations . 5
2.8 The Intuition . 6

3 Path Planning 6
3.1 What is a Trajectory . 6
3.2 Bézier Curve . 6
3.3 Coding . 7

4 Control 8
4.1 What is PID Control . 8
4.2 Components of PID Control . 8
4.3 Advantages of PID Control . 9
4.4 Challenges . 9
4.5 Coding . 9

4.5.1 Turtlebot Dynamics . 9

∗Developed by Eric Berndt, Karim El-Refai, Charles Xu, Kirthi Kumar, and Martin Zeng (Fall 2023). The PID control was wrong -
as stolen then corrected in Lab 7, developed by Mingyang Wang and Shrey Aeron (Fall 2023)

1

5 Fullstack Robotics 9

1 Introduction

In this lab, we delve into the core components of full-stack robotics: perception, path planning, and control, using
the TurtleBot as our robotic platform (Bootleg Tesla edition).

1. Perception: The TurtleBot will utilize sensors and image processing to detect a cup within its environment.

2. Path Planning: Upon detection, the robot determines a trajectory using a path planner to the cup.

3. Control: Equipped with a planned path, control algorithms guide the TurtleBot smoothly to its destination.

1.1 Starter Code

Before every lab, you should pull the updated starter code. To pull the lab 8 starter code.Navigate to the ros_workspaces
directory and run

git pull starter main

2 Perception

2.1 The Realsense Camera

As you can see, the Turtlebots now have Realsense cameras on them! As a refresher, Realsense cameras are RGBD
cameras, meaning that they provide us with an RGB image and a depth image where each pixel on the depth image
is how far away it is from the camera. More specifically, Realsense D435i cameras have both an RGB camera to get
color and then two more cameras to create a separate stereo depth camera setup to get depth. Just like humans
need two eyes to perceive depth, the Realsense needs two stereo cameras to perceive depth (don’t believe me; close
one of your eyes)! The Realsense then aligns the image feed from the RGB camera and depth image from the stereo
depth cameras to have the full RGBD image

2.2 Starting up the Realsense Camera

The realsense camera by Intel connects to lower level camera drivers in something called the RealSense SDK that
actually run the camera. Intel developed a ROS bridge that connects this SDK to ROS to spin up ROS nodes. Since
we are running the camera on the Turtlebot’s Raspberry Pi, we should ssh into the Turtlebot and launch the camera
there. Open another terminal to ssh into the Turtlebot with

ssh fruitname@fruitname

Login with the password fruitname2022. In ssh run

roslaunch turtlebot3_bringup turtlebot3_robot.launch --screen

Now in SSH, Using the Realsense ROS bridge, we can bring up several camera nodes at once with a launch file.

roslaunch realsense2_camera rs_camera.launch mode:=Manual color_width:=424 \

color_height:=240 depth_width:=424 depth_height:=240 align_depth:=true \

depth_fps:=6 color_fps:=6

Note: If you receive ”No Realsense Devices Found” error, unplug the realsense for 10 seconds, kill the realsense launch
file and then replug the camera and restart the launch file. Other errors such as ”Resource temporarily unavailable,
number X” and ”Asic Temperature value is not valid” are fine and can be ignored. Here we are setting the resolution
of the image, color_width and color_height, along with the resolution of the depth image, depth_width and
depth_height, to the lowest resolution settings the Realsense allows so the Raspberry Pi on the Turtlebot does
not crash. The align_depth parameter aligns the depth image to the RGB image. This is crucial when overlaying

2

depth data on RGB data, ensuring that when we map RGB pixels to depth points, the mapping is correct. Lastly,
depth_fps and color_fps are set to 6 frames per second to save compute on the Turtlebot’s Raspberry Pi. You
can view your new image by running rviz= in the terminal to launch Rviz. Then click Add and then By Topic to see
all the topics that Rviz can currently see. If your Realsense camera is working correctly, you should be able to add
a new Image object under /camera/color/image_raw. You should now be able to see your Realsense image feed!

2.3 Finding a Goal Position

Now lets convert the camera frame coordinates into world frame coordinates so our path planner can use it later.
Recall in ROS coordinate frames are linked together by transformations in TF trees. In this case, we have a TF
tree between odom and base_footprint and another separate TF tree containing camera_link, which is the camera
frame. We need to be able to define the goal positions that the camera detects in the world frame, so we need to
indirectly establish a link between the two. To connect the trees we can run:

rosrun tf static_transform_publisher 0 0 0 0 0 0 base_footprint camera_link 100

to define a transformation between the base_footprint and the camera_link. NOTE: This commands does not
have any output in the terminal. In this case, we are assuming the frames are coincident with a 0 transform. This
command publishes a static 0 transform at 100Hz (100 times a second) which makes the base_footprint frame a
parent of the camera_link frame in the TF tree.

2.4 The Camera Instrinsics

The Realsense camera is constantly publishing it’s camera intrinsics (the K matrix) to the topic /camera/color/camera_info
which we have define as a class variable for you. Fill in the camera_info_callback() function to properly index
into this K matrix. To see how to index it view the ROS Docs for the CameraInfo.msg.

2.5 Finding the Cup: Color Thresholding

Color thresholding is one of the simplest yet most effective methods for object detection in images, especially when
the object of interest has a distinct color. We will use color thresholding and locate a cup based on its color.

2.5.1 Basics of Color Thresholding

Color thresholding works by segmenting an image based on pixel values. For instance, if we know our cup is blue, we
can define a range of blue shades and filter out all other colors from the image. The result is a binary image where
the pixels within our defined range are set to white (255) and all other pixels are set to black (0). Some limitations:

1. Sensitivity to Lighting: Changes in lighting can affect the perceived color of objects. While HSV alleviates this
to some extent, drastic lighting changes can still pose challenges.

2. If there are other objects with a color similar to the cup, they might also be detected.

2.5.2 Convert to the Right Color Space:

While our images are usually in RGB (Red, Green, Blue) color space, it’s often beneficial to represent our image in
HSV (Hue, Saturation, Value) color space when doing color thresholding. HSV is more robust to lighting changes
and allows us to focus on the Hue, which is a more accurate representation of color. As a rule of thumb, we can
make our Hue bounds much tighter (+/-10) to filter out other colors but make our Saturation and Value bounds
much looser (+/-80). An image depicting the different shape between each colorspace is below.

3

http://docs.ros.org/en/noetic/api/sensor_msgs/html/msg/CameraInfo.html

Figure 1: HSV Colorspace Figure 2: RGB Colorspace

2.5.3 Thresholding

Define a range (lower and upper bound) for the Hue, Saturation, and Value channels that capture the color of the
cup. You can use the code we provide to find the HSV value of the cup. Move the cup to take up the entirety of
the realsense image. Then in code, we are printing of the HSV values of the average of the center row of the image
in the function process_images(). Now using the mean printed to the terminal, hardcode this mean value as the
color of the cup add some margin (around -50) to define your bound below this value (we already gave you the upper
bound), as there is noise and variation in the real world! You may have to expand this range more if you can’t get
the color filter to work. Using the defined range, create a binary mask where pixels within the range are set to white
and everything else is set to black.

2.5.4 Post-Processing

After thresholding, it’s common to have some noise in the image and random points that make it past the color
filter. While there are better ways to filter out this noise, we can simply take the mean position of all points left in
the mask and call that the center of our cup, which works reasonably well.

4

2.6 Camera Projection

Figure 3: Geometry behind a Pinhole Camera

Given Xcam, Ycam, Zcam and the camera intrinsics, we can convert pixels on the image u, v into X,Y where

X =
(u− x0)× Z

fx
(1)

Y =
(v − y0)× Z

fy
(2)

2.7 How did we Derive the Projection Equations

Place the optical center of the camera at the origin of the 3D space and let Pworld = (Xcam, Ycam, Zcam). The image
plane is positioned at Z = f , where f is the focal length. Using similar triangles, the relationship between world
coordinates and image coordinates can be derived. For the x-coordinate:

Xcam

Zcam
=

u− x0

fx
(3)

Here, u is the x-coordinate of the image point Pimage on the image plane, and x0 (often cx) is the x-coordinate of
the principal point.

Rearranging, you get:

Xcam =
(u− x0)× Zcam

fx
(4)

5

Similarly, for the y-coordinate:
Ycam

Zcam
=

v − y0
fy

(5)

Which rearranges to:

Ycam =
(v − y0)× Zcam

fy
(6)

2.8 The Intuition

The term Zcam

fx
provides a scaling factor. When the 3D point is closer to the camera (small Zcam), its image appears

larger on the image plane and vice versa. The subtraction of x0 and y0 (or cx and cy) is a translation, accounting
for the fact that the principal point might not be at the exact center of the image.

The realsense camera publishes its camera intrinsics (focal length etc.) to a rostopic. Find this topic and use it’s
data to convert pixels into points using the camera intrinsics. You can now run

rosrun perception object_detector.py

Just like how we added an Image object in RVIZ when we started the Realsense camera, if you open the /detected_cup
ROS topic in RVIZ (rviz in the terminal to launch) as an Image object you will be able to see your thresholding
algorithm running live! If you are getting an error about no odom frame existing, make sure your Turtlebot bringup
and static transform are running.

Checkpoint 1

Submit a checkoff request for a staff member to come and check off your work. At this point you should be able to:

• Demonstrate that your color filter is working properly by displaying it in RVIZ.

• Demonstrate that your object detection in RVIZ is working (you should see a green dot on the /detected cup

topic

• Explain what an RGBD camera does.

3 Path Planning

3.1 What is a Trajectory

Imagine that you were given a starting pose and a target pose for a robotic system, say the end-effector pose of a
robot arm, or the position of a mobile robot), there can be infinitely many ways to get from the current pose to
the target pose. How to effectively generate an ”optimized” trajectory from A to B is the problem that trajectory
planning solves. The word optimized can mean vastly different things depending on the context, ranging from a
humanoid robot simply not falling over, to bin-picking manipulators executing multiple picks and place actions in
one second.

3.2 Bézier Curve

In this lab, we are simply concerned with how our TurtleBots can smoothly reach the target pose. One way to do
this is by fitting a Bézier curve. A Bézier curve is a parameterized curve commonly used in robotics and computer
graphics to fit an arbitrary desired shape with few discrete ”control points”. We can use these control points to
specify properties of the trajectory such as the starting and ending position, as well as the orientation.

6

https://tinyurl.com/fa23-106alab2

Figure 4: Cubic Bézier curves

Specifically, given the current TurtleBot pose and a target pose in the world frame, we can generate a trajectory
with the following cubic Bézier curve equation:

B(t) = (1− t)3P0 + 3(1− t)2tP1 + 3(1− t)t2P2 + t3P3 (7)

where P0 and P3 are set to the starting point (x1, y1) and ending point (x2, y2) of the desired trajectory respec-
tively. P1 and P2 are intermediate control points set to a fixed distance away from the starting and ending point at
the desired start and end orientation:

P1 =

[
x1 + cos(θ1) ∗ offset
y1 + sin(θ1) ∗ offset

]
(8)

P2 =

[
x2 − cos(θ2) ∗ offset
y2 − sin(θ2) ∗ offset

]
(9)

After fitting the desired curve to the start and end pose, we sample a set of waypoints (xi, yi) along the curve at
a fixed interval for our controller to track. Along with xi and yi values, we also need a desired rotation θi for the
controller to track, which we can compute using the arctan of neighboring waypoints:

θi = arctan

(
yi+1 − yi
xi+1 − xi

)
(10)

3.3 Coding

Open up trajectory.py. There are four functions in this file, not including our main function.

• plot trajectory: takes in waypoints, a list of points that we want to get to on the trajectory, and outputs a
graph with projected orientation arrows. You don’t have to fill out anything in this function, but you should
spend some time to understand the output plots for debugging purposes.

• bezier curve: uses p0, p1, p2, p3, and t, which are values used in the cubic Bézier curve equation. You will
have to fill in the formula (but it is given above).

• generate bezier waypoints: see the previous section for the explanation. You don’t have to fill out anything
in this function, but you should spend some time understanding its purpose and functionality.

• plan curved trajectory: takes in a target position as an (x, y) tuple. Here you’ll have to initialize some tf2
variables (when did we last see that? hint: a previous lab), do a transform to orient us to the right frame, and
get our target pose in a format that we want. You can play around with the offset and numpoints parameters
here, too.

Once you’re done, your code should be able to generate some trajectories and nice plots (you can test by running
rosrun plannedcntrl trajectory.py for now)! You won’t be able to move the Turtlebot yet, though (that’s the
next part).

7

Checkpoint 2

Submit a checkoff request for a staff member to come and check off your work. At this point you should be able to:

• Show your path planner plot.

• Explain what a Bézier Curve is and how we can use it for trajectories.

4 Control

4.1 What is PID Control

PID (Proportional-Integral-Derivative control) is a type of feedback control system widely used in industrial control
systems and various other applications requiring continuously modulated control. A PID controller continuously
calculates an error value as the difference between a desired setpoint and a measured process variable and applies a
correction based on proportional, integral, and derivative terms. Watch the PID video from MathWorks if you want
to learn more.

4.2 Components of PID Control

1. Proportional (P):

• The proportional term produces an output value that is proportional to the current error value. The
proportional response can be adjusted by multiplying the error by a constant known asKp, the proportional
gain constant.

• Formula:
Pout = Kp × error (11)

2. Integral (I):

• The integral term is concerned with the accumulation of past errors. If the error has been present for
an extended period of time, it will accumulate (integral of the error), and the controller will respond by
changing the control output in relation to a constant Ki known as the integral gain.

• In this Turtlebot lab we recommend setting Ki to 0 to make the PID controller a PD controller, as the I
term here is more likely to cause issues than help.

Figure 5: Hmmm, where have I seen this before

8

https://tinyurl.com/fa23-106alab2
https://www.mathworks.com/videos/understanding-pid-control-part-1-what-is-pid-control--1527089264373.html

• Formula:

Iout = Ki ×
∫

error dt (12)

3. Derivative (D):

• The derivative term is a prediction of future error, based on its rate of change. It provides a control output
to counteract the rate of error change. The contribution of the derivative term to the overall control action
is termed the derivative gain, Kd.

• Formula:

Dout = Kd ×
d(error)

dt
(13)

The combined output from all three terms is computed as:

Output = Pout + Iout +Dout (14)

4.3 Advantages of PID Control

• Versatility: PID controllers can be used for a wide range of applications.

• Stability: Properly tuned PID controllers can provide stable control for many processes.

• Improved transient response: The controller can reduce the overshoot and settling time of a system.

4.4 Challenges

• Requires tuning: The Kp, Ki, and Kd values need to be properly set for optimal performance, which can
sometimes be a complex task.

• Not suitable for all processes: Some systems might not benefit from one or more of the PID terms.

4.5 Coding

What we’re doing here isn’t perfectly conventional PID control, but it builds off of what we’ve done in Lab 4
previously. Start from the given starter code for turtlebot control.py.

4.5.1 Turtlebot Dynamics

A Turtlebot uses a unicycle model which only turns in terms of x direction (forward) and yaw (rotation around the
z axis), so your error should be in terms of yaw instead of y as we have no way of directly controlling it on the
Turtlebot.

5 Fullstack Robotics

Now we can have Perception, Path Planning and Control! Time to put it to the test. Open up a new terminal and
run the following. Note: Everytime you run the move the Turtlebot with the full stack commands, please rerun
the Turtlebot bringup sequence to reset the position of the odom (world) frame.

1. Open a new terminal and run roscore

2. Open another terminal to ssh into the Turtlebot with

ssh fruitname@fruitname

Login with the password fruitname2022

3. In ssh run

roslaunch turtlebot3_bringup turtlebot3_robot.launch --screen

9

4. Launch the realsense node

roslaunch realsense2_camera rs_camera.launch mode:=Manual color_width:=424 \

color_height:=240 depth_width:=424 depth_height:=240 align_depth:=true \

depth_fps:=6 color_fps:=6

5. Create the static transform in the TF tree with

rosrun tf static_transform_publisher 0 0 0 0 0 0 base_footprint camera_link 100

6. Run your custom Turtlebot PID (realistically PD) controller

rosrun planningcntrl turtlebot_control.py

7. Now everytime you run rosrun perception object_detector.py your Turtlebot will find the cup and navi-
gate towards it!

8. Everytime you navigate to the cup or move the Turtlebot, restart the Turtlebot bringup sequence. This makes
sure the /odom frame is reset to always be coincident (essentially the same as) the /turtlebot frame. This
makes sure our trajectory is not wildly off when starting a run.

roslaunch turtlebot3_bringup turtlebot3_robot.launch --screen

Checkpoint 3

Submit a checkoff request for a staff member to come and check off your work. At this point you should be able to:

• Show Fullstack robotics in action!

• Sign up for 106/206B!

10

https://tinyurl.com/fa23-106alab2

	Introduction
	Starter Code

	Perception
	The Realsense Camera
	Starting up the Realsense Camera
	Finding a Goal Position
	The Camera Instrinsics
	Finding the Cup: Color Thresholding
	Basics of Color Thresholding
	Convert to the Right Color Space:
	Thresholding
	Post-Processing

	Camera Projection
	How did we Derive the Projection Equations
	The Intuition

	Path Planning
	What is a Trajectory
	Bézier Curve
	Coding

	Control
	What is PID Control
	Components of PID Control
	Advantages of PID Control
	Challenges
	Coding
	Turtlebot Dynamics

	Fullstack Robotics

