EECS/BioE 106A/206A **Lab 1: Introduction to ROS** (Turtleism!)

Two people per lab station please!

Welcome to Lab!

Health is the #1 priority. If you are not feeling well, please let us know

Covid Safety Rules

Be respectful to everyone Keep your stations clean No food/drink in the lab Don't work on the lab alone

Introductions

Name, pronouns, major/year, and thing you're looking forward to in this class

Lab Philosophy

- Learn how to program real robots using the Robotic Operating System (ROS)
- Get good at debugging both hardware and software
- Have fun getting your hands dirty with labs
- Make friends! Robotic or Human
 - o Google
 - StackoverFlow
 - Tutorials
 - Blogs, etc

https://mashable.com/2015/08/24/baxter-robot-connect-four/

Don't Be Intimidated

.

- It's not magic, you got this!
- ... but just because it's not magic doesn't mean it's trivial
- You can't possibly know all of this already.
- Everyone is coming in with different kinds of expertise.

"Well, you never really know, but when they know, you know, y'know?

Lab Structure

Meeting Beginning of Class

Go over material in the lab

Review FAQs


```
Work on Lab
Work with a partner on the
labs
```


Help & Checkoff Queue

Fill out a request for the help / checkoff queue

Lab Mechanics

- Form groups of 2 people
- Make Friends!

•

Any Logistical Questions?

ROS - not really an "OS"

- An open-source, cross-platform pseudo-operating system intended for distributed robotics applications
- Not really an "operating system," just a series of libraries that allow hardware and sensors to talk to each other asynchronously or synchronously via event-driven programming
- All coordinated by a master node

ROS

Nodes

Topics Queues over which nodes exchange messages **Publisher** Node that sends message to a topic

Subscriber

Node that receives message from a topic

Key Takeaways

- Set up a new ROS environment, including creating a new workspace and creating a package with the appropriate dependencies specified
- Use the catkin tool to build the packages contained in a ROS workspace
- Run nodes using rosrun
- Use ROS's built-in tools to examine the topics and services used by a given node

Save your code on GitHub, privately

The Internet is your best friend

Help/Checkoff Queue: https://tinyurl.com/fa23-106alab

Fun: How many Turtles did you count?

THANKS!

Does anyone have any questions?

