Homework 9: Control

EECS/BioE/MechE C106A/206A Introduction to Robotics

Due: November 13, 2023

Problem 1: Cat and mouse

Kaylene's cat Zena loves chasing wand toys, but when her roommates are out working on robots she doesn't have anyone to play with her : (Kaylene wants to build a wand toy that can be controlled autonomously when she isn't home. In this problem, we'll derive the Lagrangian of the toy in terms of the angles θ and ϕ so that we can calculate the torques that should be applied to make the toy follow a path that's fun for Zena to chase.

Figure 1: Left: The wand toy with a stuffed mouse. Middle: Model of the toy. Right: top-view diagram of the toy model.
(a) Find the Lagrangian of the toy if we model the dangling mouse as a point mass of mass m. Use θ and ϕ for the generalized coordinates, and let the height of the top of the string be 0 for the potential energy.
(b) After implementing a controller based on the Lagrangian for part (a), we find that it doesn't work as well as we hoped. To obtain a more accurate model, we decide to model the mouse as a homogeneous box instead of a point mass. What is the Lagrangian for this system? Note that the projection of the string that anchors the box and the x-axis of the box onto the $x y$ plane are aligned (i.e. the x-axis of the body frame always points away from the anchor point - see the top-view diagram).

Problem 2: OSIRIS-RExploring

On 24 September, the OSIRIS-REx satellite safely returned samples from the asteroid Bennu to Earth! Before collecting its samples, it spent 2 years orbiting Bennu and mapping its surface. If we model the satellite and asteroid as point masses, we can write the normalized equations of motion of the satellite as

$$
\begin{align*}
& \ddot{r}=r \dot{\theta}^{2}-\frac{k}{r^{2}}+u_{1} \tag{1}\\
& \ddot{\theta}=-2 \frac{\dot{\theta}}{r} \dot{r}+\frac{1}{r} u_{2} \tag{2}
\end{align*}
$$

where r is the distance from the satellite to the asteroid, θ is the satellite's angular position, k is a normalization constant, and u_{1} and u_{2} are control inputs from the satellite's thrusters.
(a) Without any thruster input ($u_{1}=u_{2}=0$), the satellite achieves a circular orbit with $r(t)=p$ and $\theta(t)=\omega t$. Linearize the system about this orbit, noting that for this orbit we can replace k with $p^{3} \omega^{2}$ (from the first equation).
(b) Characterize the stability of the linearized system when the thrusters are not firing. What does this mean for the satellite's orbit? Hint: you may use the eigenvals() function in Sympy.
(c) Is the linearized system completely controllable?

Problem 3: SpaceMax

Max, who is also passionate about rocketeering, has decided to start his own, rival company, SpaceMax. He designs the rocket depicted in Figure 2.

Figure 2: Gimbaled Rocket
The rocket is powered by a gimbaled engine, which rotates by an angle Φ with respect to spatial z axis to control the angle at which the thrust force, F_{t}, is applied. The rocket has constant mass m and inertia I about the center of mass. Note that since the rocket is planar, $x(t)=0$ for all t.
(a) Write down a vector of generalized coordinates for the system. (Hint: this should be a vector of length 3.)
(b) Find the Lagrangian $L=T-V$ of the system.
(c) Find the rocket's equations of motion in terms of a vector of generalized forces Υ.
(d) Calculate Υ_{y}, the component of the external force in the y-direction. Assume that the thrust force F_{t} is the only external force applied to the system.
(e) Calculate Υ_{z}, the component of the external force in the z-direction. Assume that the thrust force F_{t} is the only external force applied to the system.
(f) Max wants to keep his rocket stable about $z=z_{d}$. This suggests trying to drive the error $e=z_{d}-z$ to 0 . Prove that for any system with $e \in \mathbb{R}^{n}$, if e evolves according to the following ODE,

$$
\begin{equation*}
0=K_{p} e+K_{d} \dot{e}+c \ddot{e} \tag{3}
\end{equation*}
$$

where $c \in \mathbb{R}$ is a constant, we can choose $K_{p}, K_{d} \in \mathbb{R}^{n \times n}$ such that $\lim _{t \rightarrow \infty} e(t)=0$. Hint: Choose convenient K_{p} and K_{d} matrices and examine an arbitrary row of the ODE.
(g) Assuming a fixed gimbal angle Φ, find an expression for the thrust force F_{t} that gives error dynamics of:

$$
\begin{equation*}
0=K_{p} e+K_{d} \dot{e}+\ddot{e} \tag{4}
\end{equation*}
$$

Where $e=z_{d}-z$. You may leave your answer in terms of gains K_{p}, K_{d}, and constant gimbal angle Φ. You may assume that the thrust vector has a positive z component. Using the result of part (f), we can conclude that the rocket will stably hover at z_{d} !

