
Homework 7: Jacobians

EECS/ME/BioE C106A/206A Introduction to Robotics

Fall 2023

Problem 1: Jacobian for a 4DOF manipulator

Figure 1: A four degree of freedom manipulator

Figure 1 shows a 4DOF manipulator with 3 revolute joints and 1 prismatic joint (joint 3) in its
initial configuration θ = 0.

(a) Compute the spatial Jacobian Js and the body Jacobian Jb of the manipulator in the con-
figuration shown.

(b) Now let the robot move so that θ2 = π/2, with all other joints remaining at zero. Compute
the spatial Jacobian Js and body Jacobian Jb in the new configuration.

(c) In which configurations, the one in part (a), or the one in part (b), is the robot in a singular
configuration? Justify.

(d) During the execution of a smooth joint trajectory θ(t) ∈ R4, the robot passes through the
configuration from part(a) with joint velocities θ̇(t) = (0,−1/L, 1, 1/L). Find the velocity of
the origin of the end effector as seen from the spatial frame at that instant. Note that here
we are asking for the velocity of the point at the origin of the tool frame, so your answer
should just be a vector ṗsb ∈ R3.
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Problem 2: Singularities of Euler Angles

We have seen previously that the Euler angle representation of a rotation must have a singularity.
In this problem we will use our new mathematical tools to prove it!

(a) Let a rotation R be achieved by extrinsic rotations about the spatial z, y, and x axes, i.e.
a ZYX Euler angle. Show that the spatial Jacobian for the rotation has a singularity when
θy = π

2 .

(b) Prove that a rotation about three arbitrary axes (R = eω̂1θ1eω̂2θ2eω̂3θ3) will have a singularity
if the three axes are linearly dependent, i.e. aω1 + bω2 = ω3. (Note that this is the case for
e.g. ZYZ Euler angles).

(c) Prove that any rotation about three linearly independent axes will also have a singularity.
Hint: Set θ1 = 0 and see if you can find a θ2 that produces a singularity. Note that you
can project a vector v onto the plane normal to a second vector w using the equation vproj =
(I − wwT )v. Try drawing a diagram!
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Problem 3: Kinematic Singularity: four coplanar revolute joints

Four revolute joint axes with twists ξi = (qi × ωi, ωi), i = 1 · · · 4 are said to be coplanar if there
exists a plane with unit normal n such that:

• Each axis direction is orthogonal to n: nTωi = 0 for all i.

• The vector from qi to qj is orthogonal to n: nT (qi − qj) = 0 for all i, j.

Show that when four of its revolute joint axes are coplanar, any six degree of freedom manipulator
is at a singular configuration.
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Problem 4: Manipulability Agility Ability

In robotics, we’re often concerned with the question of how easily our robot arms move in space.
We know that in certain configurations, we encounter kinematic singularities, in which the robot
will no longer be able to enjoy its usual range of motion. How can we measure how close we are to
encountering one of these singularities? We may use a manipulability measure.
One measure of manipulability is the product of the singular values of the spatial jacobian:

µ(θ) =
∏
i=1

σi(θ) (1)

Where σi is the ith singular value of the robot’s spatial jacobian, Js(θ). Note that Π means “take
the product” in the same way that Σ means “take the sum.”
Before we analyze this special function, we’ll need a few facts from linear algebra:

1. The null space of a matrix A ∈ Rm×n is the set of all nonzero vectors v ∈ Rn such that
Av = 0.

2. For all matrices A ∈ Rm×n, the null space of A equals the null space of ATA.

Using these facts, let’s examine some properties of the manipulability measure!

(a) The singular values σi of a matrix A ∈ Rm×n are defined as the square roots of the eigenvalues
of ATA:

σi =
√
eig(ATA) (2)

Prove that if the spatial jacobian Js(θ) has a singularity, it will have at least one singular
value σi = 0. Hint: when a matrix is singular, at least one of its eigenvalues is zero.

(b) Prove that the manipulability measure:

µ(θ) =
∏
i=1

σi(θ) (3)

Is equal to zero whenever the Jacobian has a singularity.

(c) Let’s graphically interpret the manipulability function using ZYX Euler angles. Letting θ1 =
θ3 = 0, find the spatial jacobian of the ZYX Euler angles as a function of θ2.
Plot the manipulability measure µ(θ2) of this Jacobian as a function of the second Euler
angle on the domain θ2 ∈ [0, 2π), e.g. using Python. Using your knowledge of Euler angles,
interpret the locations of the minima and maxima of µ(θ2).
Hint: Refer to your solution to question 2.
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