
Homework 5: Computer Vision

EECS/ME/BioE C106A/206A Introduction to Robotics

Fall 2023

Note: This problem set includes programming components, but you will be submitting screenshots
of your results, so there is no autograder for this assignment. Submit a pdf of your work for all
problems to the Gradescope assignment.
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Problem 1: Two-View Triangulation

Consider two cameras with reference frames {1} and {2} respectively. As always, the reference
frame of each camera is such that the X � Y plane is parallel to the image plane and the Z-axis
points in the direction of viewing.

Assume we know the relative transform g21 = (R, T ) 2 SE(3). Additionally, assume the cameras
are calibrated and normalized, so that the camera matrix K is the identity.

Both cameras are looking at the same point p in 3D space, which has unknown coordinates X1 2 R3

in frame {1} and X2 2 R3 in frame {2}. We observe their image coordinates x1 and x2, written in
2D homogeneous coordinates.

(a) Write down an expression relating x1 to X1 in terms of an unknown depth �1. Do the same
for camera 2.

(b) Write down an expression for X2 in terms of X1.

(c) Find a method for solving for X1 in terms of the known quantities R 2 SO(3), T 2 R3, x1, x2.
Can you deal with the case when the image measurements x1, x2 are corrupted by some small
(white, zero mean, Gaussian) noise?

Hint: Eliminate X1 and X2 from your expressions, and try to find only the unknown depths

�1 and �2. Then, use these depths to recover X1.

Through this problem, we have successfully recovered the real-world coordinates of a point, including
its distance from the camera, simply by knowing how the positions of our camera are related to
one another! This method usually requires some tuning in real life, but it is in fact how our eyes
work.
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Problem 2: Epipolar Ambiguities and Structure from Motion

Consider a similar set up as in the previous problem, with two calibrated, normalized cameras,
where the transform g21 = (R, T ) between them is not known. Recall that for such a system,
we define E = T̂R 2 R3⇥3 to be the essential matrix. The essential matrix imposes the epipolar

constraint, which is that whenever x1 and x2 are the (homogeneous) image coordinates of the same

point, then they must satisfy

xT2 Ex1 = 0

Such a pair of image points x1, x2 that correspond to the same point in 3D space viewed from
two di↵erent cameras are called corresponding points. In this problem, we consider the problem of
recovering the relative poses between cameras in a multi-camera setup when we are given a number
of corresponding-point pairs.

It turns out that 8 pairs of corresponding points (x(1)1 , x(1)2 ), · · · (x(8)1 , x(8)2 ) in general position are
enough to compute a candidate essential matrix Ẽ. Each such pair gives us an equation of the form

x(i)2

T

Ex(i)1 = 0 (3)

where the x’s are all known. We additionally have the constraint that E should be of the correct
form to be written as T̂R. i.e. we should be able to write it as the product of a cross product
matrix 2 so(3) and a rotation matrix 2 SO(3). We can then solve this system of equations for a
nonzero 3 ⇥ 3 matrix E that satisfies this set of constraints. See chapter 5 from An Invitation to

3D Vision (Ma, Soatto, Kosecka, Sastry) for the full details.

(a) Show that we can only recover E up to a scale factor. In particular, show that if Ẽ is a matrix
that satisfies all the required constraints, then so is cẼ for any real number c.

Remark: We can in fact conclude that this ambiguity can be attributed to an unknown scale
factor on the translation vector T between the two frames. This means that although we
can decompose a computed essential matrix E into rotational and translational components
(R, T̃ ), we can only recover the original translation T up to a scale factor. Typically then,
we restrict ourselves to finding a T̃ such that kT̃k = 1.

(b) Say we have a system of 3 cameras with reference frames {1}, {2} and {3} respectively,
and we are able to recover the transforms (R12, T̃12), (R23, T̃23) and (R13, T̃13) using point
correspondances, where each T̃ij has norm 1. So there are unknown, nonzero scale factors
�ij such that the true Tij = �ij T̃ij . If we could find the three scalars �12,�23,�13 then we
would have fully recovered the relative poses between the various cameras. Show that in this
setting, we can only recover the �ij ’s up to a single scaling factor.

(c) Consider the same setup as part (b), but now the translation T12 is known exactly (i.e. �12 is
known). Show that now, all �ij ’s can be recovered and the relative poses between the cameras
can be found.
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Problem 3: Planar Motion Models

For feature tracking algorithms we often assume that the motion of points in the image when
restricted to a small window can be approximated through di↵erent transformations of varying
levels of complexity. These assumptions may only hold for a small window, but for an appropriate
object, there exist motions in 3D space such that these transformations are accurate over the entire
image. In this question, we will determine what those motions are.

Assume we are only concerned with the motion of image points corresponding to an object where
all points in the object have the same z�coordinate zo relative to the camera frame (ie. all world
points of interest lie in some plane parallel to the x � y plane which passes through the point⇥
0 0 zo

⇤T
)

(a) Define h(x) as a function which maps an image point to its new location after the corre-
sponding world point undergoes a rigid motion. Let’s consider a scenario where we measure
image motion h(x) and we notice that each point on the image corresponding to our object
translates by the same �x. More concretely, h(x) = x+�x. Prove that a rigid body motion

R = I and T =
⇥
a b 0

⇤T
applied to our object corresponds to this h(x).

(b) Now let’s consider a scenario where h(x) = Ax + d for image points corresponding to our
object. Prove that a rigid body motion R = RZ(✓) with arbitrary T applied to our object
corresponds to this motion.
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Problem 4: Geometry in the time of (deep) learning

Some autonomous car companies such as Tesla and Wayve are experimenting with end-to-end

driving, where a deep neural network takes in all sensor inputs and directly predicts the future
trajectory of the car. Mathematically, this can be written as a map from the sensor data ot to a
trajectory X̃:

f(ot) = [st+1, ..., st+H ] := X̃t 2 R2⇥H (4)

where H is the control time horizon and st = [xt, yt]T is the desired location of the car at time t
on the road plane.
You might be tempted to think that in this scenario we can throw out all our fancy geometry, but
not so fast! It still plays a critical role in analyzing the behavior of our neural network.

Figure 2: Left: The world frame is located on the road beneath the center of the car at the initial
time. A front-facing camera is mounted in on the front of the car, and the relative position and
orientation of the camera and world frames are shown. Right: For part (b), the location where the
car will come to a stop is shown with a pink dot.

a) Let’s say your car has a forward-facing RGB camera and you want to visualize the car’s
intended trajectory by plotting the predicted future points on the image. You are given:

(a) The future trajectory in the world coordinate frame {W}
(b) The camera calibration matrix Kf

See the figure for an illustration of the camera frame and world frames. Fill out the
world pt to pixel function in the provided notebook to return the correct pixel location for
each trajectory point. Submit a screenshot of the trajectory plot. Hint: see section 3.3 of An

Invitation to 3D Vision

b) You got a nice new high-res camera for your car, but your old camera parameters aren’t
working anymore! You know the new camera has square pixels and no skew distortion, but
you’re not sure about the focal length f . You look through some data you’ve collected and
notice that at time t = 5 the car will stop right behind the end of the lane marking. You
decide to plot the future trajectory at t = 0 and use the known future position to find f and
(roughly) calibrate your camera.

Fill out the world pt f to pixel function in the provided notebook to return the pixel
locations of the trajectory for a particular value of f . Use the visualization to tune f . Submit
a screenshot of the final trajectory plot.
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c) You’re now out on the road using your calibrated camera to check the safety of your car’s
trajectory. Use the f from part (b) to visualize the predicted trajectory in the notebook. Is
this trajectory safe?
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