
Homework 0: Linear Algebra Review

EECS/ME/BioE C106A/206A Introduction to Robotics

Fall 2023

Note: Problems marked [bonus] will be eligible for a (very) small amount of extra credit, though you
cannot receive more than a full score on the homework as a whole. We encourage you not to spend
exorbitant amounts of time on these questions, and you may receive partial credit for attempting
them.

Problem 0: It’s Dangerous to Go Alone

This class can be really rough at times, so it always helps to have someone you can rely on for
notes or other assistance when needed. Plus, you will need a partner for the lab, and a few for the
final project! For this question, find a study buddy (or buddies) and exchange contact information.
Then, state the name and email of your buddy in response to this question. For a chance to score
extra credit, attach an epic selfie of you with your buddy as well (a zoom meeting screenshot would
also suffice).

Note: Feel free to buddy with as many people as you want, and if someone wants to be your buddy
after you already submit this assignment, you don’t have to resubmit.
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Problem 1: Orthogonal Matrices

Let R be an n× n matrix, and let ri ∈ Rn be the i-th column of R. R is said to be orthogonal, if
for any i ̸= j, the vectors ri and rj are orthogonal to each other, and each ri is unit length. For
this class, we then also say that the vectors {r1, ..., rn} form an orthonormal basis for Rn if the
determinant is +1 (following the right-hand rule).

(a) Show that a square matrix A is orthogonal if and only if ATA = I. Hint: Consider writing
the (i, j)th entry of ATA in terms of dot products of the columns of A.

(b) Let R be an orthogonal n × n matrix and let u be an n−dimensional vector. Show that
||Ru|| = ||u||. In other words, show that R preserves norms when it acts on vectors. Hint:
Use the fact that for the standard euclidean norm, ||u||2 = uTu.

(c) Show that if R is an orthogonal matrix, then det(R) = ±1. (Although as mentioned above,
in this class we will primarily work with orthonormal matrices, defined as a special case of
orthogonal matrices having a determinant of +1.) Hint: Take the determinant on both sides
of the equation RTR = I.
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Problem 2: A Change of Coordinates

One linear algebra concept we heavily use is the change of coordinates. We will spend some time
developing a mathematical framework for describing how rigid objects move relative to each other,
the essence of rigid body motion (the kind we see in both robot arms and mobile robots!). This
all starts from the ideas of a basis, a set of vectors which define a coordinate system. While the
coordinate transforms introduced in this course may initially feel different than the change of basis
you may have seen in earlier classes, the math is essentially the same. Consider this problem a
refresher on basis concepts and a taste of what’s to come.

Figure 1: Vector v in two bases, α and β.

(a) Given vector v defined in terms of the standard basis and a set of basis vectors β = {β1, . . . , βn},
compute vβ, vector v in terms of the basis β.

(b) Define Gαβ to be a change of basis matrix from basis β to basis α. (An easy way to think of
this is to look at the order in the subscripts. For example, Gαβ vβ will transform the vβ vector
from the β frame to the α frame: Gαβ vβ = vα.) Given Gαβ, Gγβ and vector vα, compute vγ .

(c) True or False: Orthogonality between vectors is independent of choice of basis for those
vectors. If true, provide a proof. If false, provide a counterexample.

(d) True or False: For any linearly independent set of vectors, we can pick a basis for those vectors
which makes the set orthonormal. If true, provide a proof. If false, provide a counterexample.
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Problem 3: Algebraic Properties of the Matrix Exponential

Recall that for a scalar a ∈ R, we can write its exponential ea as a Taylor series that converges for
any a:

ea =

∞∑
n=0

ak

k!
= 1 + a+

a2

2!
+ · · · (1)

We can similarly use an infinite series to define the exponential of a square real n× n matrix A:

eA =
∞∑
k=0

Ak

k!
= I+A+

1

2!
A2 + · · · (2)

Where by convention we take A0 to be the identity matrix for any square matrix A. The result is
also an n× n matrix. As it turns out, this infinite series converges absolutely for every matrix A.
So we use this series to define the matrix exponential function eA.

The matrix exponential shows up all over the place in the study of rigid body motion and dynam-
ical systems, especially in the solutions to vector differential equations, as we shall see. We will
make heavy use of the matrix exponential in this class. In this problem, you will use the infinite
series representation in equation (2) to derive some of the fundamental algebraic properties of this
function, which will prove very useful in our study of rigid body kinematics.

(a) Show that e0 = I. i.e. the exponential of the zero matrix is the identity matrix.

(b) Show that (eA)T = e(A
T ).

(c) Let G be any invertible square matrix of the same size as A. Show that eGAG−1
= GeAG−1.

Hint: Start by showing that for all n,
(
GAG−1

)n
= GAnG−1.

(d) Show that if λ is an eigenvalue of A then eλ is an eigenvalue of eA.

Hint: Use the series expansion. Show that if v is an eigenvector of A with eigenvalue λ then
it is also an eigenvector of eA with eigenvalue eλ. i.e. show that eAv = eλv.

Remark: In fact, a suitable converse of the above statement is also true, though more difficult
to prove. We can conclude that if the eigenvalues of A (possibly repeated) are λ1, ..., λn then
the eigenvalues of eA are exactly eλ1 , ..., eλn .

(e) Using the previous part, show that det(eA) = etrA. Conclude that the exponential of any
matrix is always invertible.

Hint: What is the relationship between the eigenvalues of a matrix, its determinant and its
trace? Also use the remark from the previous part.

Remark: In fact, the inverse of eA is simply e−A.
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Problem 4: Enter the Matrix

In this problem, we’ll review the solution to an important class of ordinary differential equations.
In next week’s lecture, we’ll see the importance of these equations in describing rotations of rigid
bodies.

(a) Solve the ordinary differential equation dx
dt = ax(t), for t ≥ 0, a ∈ R, assuming the initial

condition x(0) = x0.

(b) For a scalar a ∈ R, we know that d
dt(e

at) = aeat. Let’s examine how this property scales to
the matrix exponential. The matrix exponential of At, for A ∈ Rn×n and t ∈ R is defined:

eAt = I +At+
1

2!
(At)2 + ... =

∞∑
k=0

(At)k

k!
(3)

Using this definition, show that d
dte

At = AeAt = eAtA.

(c) Show that the solution to the differential equation:

dx

dt
= Ax (4)

Where A ∈ Rn×n, x ∈ Rn with initial condition x(0) = x0 is given by:

x(t) = eAtx0 (5)

(d) [Bonus] Using any method you like, find the general solution to the following homogeneous
system of linear differential equations:

dx

dt
=

[
2 2
1 3

]
x(t) (6)

Your solution should be of the form x(t) = c1e
λ1tv1 + c2e

λ2tv2, for v1, v2 ∈ R2. Hint: How
can diagonalizing the matrix help us find a solution?
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Problem 5: [Optional] Python Review

Being able to program in Python is essential for completing lab and homework assignments. If
you’re feeling rusty, there’s an optional Python bootcamp linked in Week 0 of the website as well
as in the Resources page. No need to turn anything in for this part!
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