
EECS106A Discussion 9: Lagrangian dynamics in 3D and state
spaces

1 Review: Lagrangian dynamics

As we saw last week, the kinetic energy of a rigid body can be expressed as:
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where we obtain the second equation by grouping the linear velocity v and body angular velocity !b

into the body twist V b
, and the inertia tensor I and mass m into the generalized inertia matrix :

M =


mI3 0

0 I

�

we can then write our Lagrangian as

L = T � V (3)

and our equations of motion as
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= M(q)q̈ + C(q, q̇)q̇ +G(q). (5)

M(q), the matrix that multiplies the acceleration terms q̈, is called the inertia matrix or the manip-

ulator inertia matrix in the context of a robotic manipulator. Note that we have now covered three

di↵erent uses of the word “inertia” (sorry!):

1. The inertia tensor I 2 R3⇥3

2. The generalized inertia matrix M 2 R6⇥6

3. The (manipulator) inertia matrix M(q) 2 Rn⇥n
for n generalized coordinates

We will discuss the inertia tensor further in the next section. For a system composed of multiple links

or parts, we have T =
P

i Ti and V =
P

i Vi.

Problem 1: How does equation (1) simplify if the rigid body is a point mass?
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Problem 2: How does equation (1) simplify if motion is limited to a 2D plane?

2 Interpreting 3D inertia

2.1 Inertia tensor of a box

Consider the simple rigid body shown in figure 1:

Figure 1: A box with evenly distributed mass.

Let’s place the body reference frame at the center of mass of the box, and assume that the box is

homogeneous (its mass is distributed evenly). If we rotate the box around some axis !, we can see

that the distribution of mass about the axis will depend on the orientation of !.

Problem 3: Let l > w > h, and consider rotations about the x, y, and z axes. Which rotation should

have the highest inertia? Which should have the lowest?

By calculating the velocity of each point in the box due to a rotation and integrating over the mass

density times the velocity at each point, it’s possible to calculate that the inertia tensor of this box is

given by
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Problem 4: You’ve successfully programmed your robot arm to toss the box shown above straight up

in the air with speed vz and a fancy spin given by ! = [!x,!y,!z]
T
. Let the height of the hand be

given by r. What is the Lagrangian for the box at the moment it leaves the robot’s hand?

2.2 Inertia matrix of a manipulator

You and a friend are having a dance competition but need an impartial judge, so you decide to

use a robot! To indicate the victor, the arm shown in figure 2 needs to be able to wave in their

direction. The links of the robot have masses m1 and m2, lengths l1 and l2, and inertia tensors given

by Ii =

2
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Figure 2: A simple robojudge in its zero configuration.

Problem 5: Find the inertia matrix and Lagrangian for this system as a function of the joint angles

✓1 and ✓2. How can we interpret the inertia matrix?
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3 Intro to linear dynamics

When working with Lagrangian dynamics, we introduced the “generalized coordinates,” which describe

the motion of a system in terms of a set of n scalar coordinates qi. In control theory, we call these

coordinates the state of our system, and the set of all possible values of the coordinates form the state

space. Along the same line, choosing an appropriate set of coordinates is often referred to as state

space modelling.

Problem 6: If we want to model the motion of the box being tossed from the previous section, what

state space could we choose? What if we want to model an arbitrary toss in any direction and with any

spin?

The easiest kind of systems to analyze are linear systems, which have the form

ẋ(t) = A(t)x(t) +B(t)u(t) (7)

y(t) = C(t)x(t) +D(t)u(t) (8)

where x 2 Rn
is the state vector, u 2 Rm

is a set of control inputs, A 2 Rn⇥n
describes how the

system state will change in the absence of a control input, and B 2 Rn⇥m
describes how the control

input a↵ects the system state. If A, B, C, and D do not change over time, we say that the system is

linear time-invariant or LTI.

In general, we may not be able to directly measure or observe all of the system states, so the observation

y 2 Rno is some linear function of x and u. In the case where we can observe all of x directly, we take

D = 0, C = I and y(t) = x(t).

Unfortunately, most interesting systems do not have linear dynamics. However, it turns out that

nonlinear dynamics can often be approximated with good accuracy in the local neighborhood of a

point by “linearizing” them about this point. This means that analyzing the behavior and control of

linear systems is still extremely useful, especially since it’s very di�cult to analyze nonlinear systems.
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