
EECS106A Discussion 7: Jacobians

1 Review: Spatial and body twists

Last week, we learned about spatial and body velocity twists between two frames A and B. These
velocity twists are useful because they allow us to find the instantaneous velocity of the B frame
expressed in both spatial and body coordinates.

vqa(t) := q̇a(t) = ġab(t)qb = ġab(t)g
−1
ab (t)︸ ︷︷ ︸

:=V̂ s
ab

qa = V̂ s
abqa (1)

vqb(t) := g−1
ab (t)vqa(t) = g−1

ab (t)ġab︸ ︷︷ ︸
:=V̂ b

ab

qb = V̂ b
abqb (2)

Today, we will be thinking of velocities in the context of robotic manipulators. We will be finding the
velocities between the fixed frame S and the end effector frame T , V̂ s

st and V̂ b
st.

To do so, we will introduce the notion of spatial and body manipulator Jacobians. Then, we will see
how these manipulator Jacobians help us detect singular configurations.

1.1 Adjoint for Twist Coordinate Change

When working with twists, we can transform a twist matrix ξ̂ into a different coordinate system defined
by g, so that it becomes ξ̂′

ξ̂′ = gξ̂g−1 (3)

In twist coordinates,
ξ′ = Adgξ (4)
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2 Jacobians

2.1 Spatial Jacobian Definition

As before, we have the expression for V̂ s
st as a function of the transformation between S and T :

V̂ s
st = ġst(θ)g

−1
st (θ) (5)

In twist coordinates,

V s
st = Js

st(θ)θ̇ (6)

where the spatial manipulator Jacobian Js
st(θ) is defined as

Js
st(θ) =

[
(∂gst∂θ1

)∨ ... (∂gst∂θn
)∨
]

(7)

=
[
ξ1 ξ′2 ... ξ′n

]
(8)

ξ′i = Ad
(eξ̂1θ1 ...eξ̂i−1θi−1 )

ξi (9)

2.2 Interpretation

The spatial Jacobian allows us to calculate the velocity of the robot end effector as a function of the
current state of the individual robot joints, θ, and the velocities of each joint, θ̇.

The ith column of the spatial Jacobian ξ′i is equal to the ith joint twist transformed to the current
manipulator configuration and written in spatial coordinates.

Problem 1. Explain how this physical interpretation is true.
ξi is the i

th joint twist expressed in the spatial frame in the reference configuration. In its transformed

configuration, it undergoes the transformation eξ̂1θ1 . . . eξ̂i−1θi−1 . Applying transformations to twist
coordinate vectors requires the adjoint, so ξ′i = Ad

(eξ̂1θ1 ...eξ̂i−1θi−1 )
ξi.

2.3 How it’s used

We can use the spatial Jacobian to compute the instantaneous velocity of a point q attached to the
end-effector relative to the spatial frame. This velocity is

vqs = V̂ s
stqs = (Js

st(θ)θ̇)
∧qs (10)

where qs is the coordinates of q in the spatial frame.

2.4 Body Jacobian definition

The body Jacobian is very similar to the spatial one - it allows us to calculate the instantaneous
velocity of the robot end effector (and any point attached to it) as a function of the joint velocities.
The only difference is that the velocity is with respect to the body frame instead of the spatial frame.

V̂ b
st = g−1

st (θ)ġst(θ) (11)

In twist coordinates,
V b
st = Jb

st(θ)θ̇ (12)
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where the body manipulator Jacobian Jb
st(θ) is defined as

Jb
st(θ) =

[
ξ†1 ξ†2 ... ξ†n

]
(13)

ξ†i = Ad−1

(eξ̂i+1θi+1 ...eξ̂nθngst(0))
ξi (14)

2.5 Interpretation

For some configuration θ, the body manipulator Jacobian maps the joint velocity vector θ̇ into the
body velocity twist coordinates of the end-effector.

The ith column of the body Jacobian ξ†i is equal to the ith joint twist transformed to the current
manipulator configuration and written in body coordinates.

Problem 2. Explain how this physical interpretation is true.
The claim is that ξ† is the transformed ξ expressed in T coordinates. The transformed ξ in S coordi-
nates is ξ′, so we expect

ξ† = Ad−1
gst(θ)

ξ′

Using the forward kinematics map that we know and love,

ξ† = Ad−1

eξ̂1θ1 ...eξ̂nθngst(0)
ξ′

ξ† = Ad−1

eξ̂1θ1 ...eξ̂nθngst(0)
Ad

(eξ̂1θ1 ...eξ̂i−1θi−1 )
ξi

From the linearity of the adjoint transformation (ie. Adg1g2 = Adg1Adg2), terms cancel out and we get

ξ† = Ad
g−1
st (0)e−ξ̂nθn ...e−ξ̂iθi

ξi

ξi is invariant to the ith twist, so

ξ†i = Ad−1

(eξ̂i+1θi+1 ...eξ̂nθngst(0))
ξi

2.6 How it’s used

We can use the body Jacobian to compute the instantaneous velocity of a point q attached to the
end-effector relative to the body frame. This velocity is

vqb = V̂ b
stqb = (Jb

st(θ)θ̇)
∧qb (15)

where qb is the coordinates of q in the tool frame.

2.7 Converting between Spatial and Body Jacobians

Just as the adjoint map takes us between spatial and body twists, it also takes us between spatial and
body Jacobians. This shouldn’t be surprising since the columns of the Jacobian are twists!

Js
st(θ) = Adgst(θ)J

b
st(θ) (16)
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2.8 Finding the Jacobian

Problem 3. Find the spatial and body manipulator Jacobians for the Stanford manipulator.

Figure 1: Stanford manipulator

Js
st(θ) =

[
ξ1 ξ′2 . . . ξ′n

]
Js
st(θ) =

[
ξ1 Ade1ξ2 . . . Ade1...en−1

ξn
]

We could solve for the spatial manipulator Jacobian using the adjoint transformations. Alternatively,
we can solve for each transformed twist component individually. This gives us the following:

Js
st(θ) =

[
−ω1 × q1 −ω′

2 × q′1 v′3 −ω′
4 × q′w −ω′

5 × q′w −ω′
6 × q′w

ω1 ω′
2 0 ω′

4 ω′
5 ω′

6

]
where ω′

2 = eω1θ1(ω2), ..., ω
′
6 = eω1θ1eω2θ2eω4θ4eω5θ5(ω6). (Note there’s no eω3θ3 term in these expres-

sions because joint 3 is prismatic and doesn’t rotate anything.) To get the untransformed ωi terms,
we can simply read off from the diagram: ω1 = ω4 = [0, 0, 1]T , ω2 = ω5 = [−1, 0, 0]T , ω6 = [0, 1, 0]T .

The transformed v′3 is obtained similarly, since we just need to figure out where the axis of translation
for the prismatic joint “points” after being rotated by joints 1 and 2: v′3 = eω̂1θ1eω̂2θ2(v3) where
v3 = [0, 1, 0]T .

For the points, q′1 = q1 = [0, 0, l0]
T , and we can find q′w in homogeneous coordinates by q̄w

′ =

eξ̂1θ1eξ̂2θ2eξ̂3θ3 q̄w where q̄w = [0, l1, l0, 1]
T . Note that here we needed homogeneous coordinates and

eξ̂iθi terms instead of eω̂iθi terms because we are finding the new location of a point (rotation +
translation) rather than the rotation of an axis (rotation only).

To find the body Jacobian, we can use the conversion equation

Jb
st(θ) = Adg−1

st (θ)J
s
st(θ)
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When we want to find the manipulator Jacobians for some specific configuration θd, it’s easier to do it
by inspection rather than having to first find the manipulator Jacobians for general θ, then plugging
in θd. To find cross products, it may be helpful to draw out circles to visualize direction.

Problem 4. Find the spatial and body manipulator Jacobians for the Stanford manipulator in its
initial configuration. In this case, θd = 0.

To find the spatial Jacobian, all ξ′i are equal to ξi because we happen to be in the reference configuration.

Js
st(θd = 0) =

[
ξ1 ξ′2 . . . ξ′n

]
=

[
ξ1 ξ2 . . . ξn

]
We can find all these xiis as we’ve learned for forward kinematics, but to calculate −ω × q we can
actually do it easier by inspection using circles. For each revolute joint, draw a circle perpendicular to
the joint axis centered at the axis and passing through the origin of the frame of reference.

Let’s try with each of the joints here. Firstly, ξ1 =
[
0 0 0 0 0 1

]T
. Now, let’s try the circle

method for joint 2. The circle centered at and perpendicular to ω2 passing through the origin of S
instantaneously passes through the origin in the negative y direction. Thus, v = ω× q will be non-zero
only in the y-component. The magnitude of this component is equal to the perpendicular distance

between the y−axis and ω2, which is l0. Thus, ξ2 =
[
0 −l0 0 −1 0 0

]T
.

Joint 3 is prismatic, so ξ3 =
[
0 1 0 0 0 0

]T
.. Doing the circle method for joint 4 allows us to

draw a circle in the xy plane which crosses the origin of S in the +x direction. The magnitude of vx
then is the perpendicular distance from the x-axis to w4, which is l1, so ξ4 =

[
l1 0 0 0 0 1

]T
.

ξ5 is probably the hardest twist to find using the circle method. After drawing the circle, we see that
at the origin, the instantaneous circle direction is in the yz plane with a negative y and positive z
component. The magnitudes of these components are the perpendicular distances between the y−
and z− axes to ω5 respectively (which are l0 and l1). Thus, ξ5 =

[
0 −l0 l1 −1 0 0

]T
. Finally,

ξ6 =
[
−l0 0 0 0 1 0

]T
.

We repeat the same process for the body Jacobian, except now we define all the twists ξ† with respect
to B, which means we can just pretend S doesn’t exist.

ξ†1 =
[
−l1 0 0 0 0 1

]T
, ξ†2 =

[
0 0 −l1 −1 0 0

]T
, ξ†3 =

[
0 1 0 0 0 0

]T
,

ξ†4 =
[
0 0 0 0 0 1

]T
, ξ†5 =

[
0 0 0 −1 0 0

]T
, ξ†6 =

[
0 0 0 0 1 0

]T
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3 Singularities

At some configuration θs, it may be possible for Js
st(θs) to not have full rank. This corresponds to the

manipulator not being able to achieve motion in certain directions (since Js
st(θs) doesn’t fully span the

space of possible velocities). We call θs a singular configuration. Since being in singular configurations
is not desirable, it’s important to figure out what they are for a particular manipulator so they can be
avoided.

Problem 5. Show that a manipulator Jacobian is singular if it has four revolute joint axes that
intersect at a single point. If q is the point at which the axes intersect, we can define S to have its
origin at q, since when finding singularities, it doesn’t matter where the frame of reference is defined.
If there are only four joints in total in the manipulator, we have Js ∈ R6×4, so the maximal rank of
Js is 4.
Expressing the specific twists,

Js =

[
0 0 0 0
ω1 ω′

2 ω′
3 ω′

4

]
which can only have a maximum rank of 3 because not all four ωi’s can be linearly independent from
each other.

If there are n ∈ [5, 6] joints in total, the maximal rank of Js is n. However, there cannot be n
linearly independent columns because the first 4 from the intersecting revolute joints are already
linearly dependent. Therefore, a manipulator of up to 6 joints will have a singularity in this kind of
configuration.

However, if n > 6, there is no guarantee that the manipulator is still in a singular configuration, since
there may be enough linearly independent columns to achieve the maximal rank of 6.
Problem 6. When is the elbow manipulator in a singular configuration, assuming l1 = l2?

Figure 2: Elbow manipulator

When the wrist is stacked on top of the shoulder, i.e. θ3 = ±π.
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