Discussion 7: Jacobians and singularities
2 Dof Spatial Jacobian


$$
\begin{aligned}
& \text { Let } \dot{\theta}_{2}=0 \Rightarrow V^{s}=\xi_{1} \dot{\theta}_{1} \\
& \text { recall: } V_{s t}^{s}=A_{g_{s+}} V_{s+}^{b}, \quad \xi^{s}=\operatorname{Ad}_{g_{s t}} z^{b} \\
& \text { let } \dot{\theta}_{1}=0 \Rightarrow V^{s}=A d j_{e} e^{\hat{\varepsilon}_{1}}, \xi_{2} \dot{\theta}_{2}
\end{aligned}
$$

General case: just add them together!

$$
\begin{aligned}
& v^{s}=\xi_{1} \dot{\theta}_{1}+\underbrace{A d}_{\xi^{\prime}} e^{e_{1}^{\prime} \hat{\theta}_{1}} \xi_{2} \\
& \xi^{s}(\theta) \\
&=\underbrace{\left[\begin{array}{ll}
\xi_{1} & \xi_{2}^{\prime}
\end{array}\right]}_{\dot{\theta}} \underbrace{\left[\begin{array}{l}
\dot{\theta}_{1} \\
\dot{\theta}_{2}
\end{array}\right]}
\end{aligned}
$$

For $n$ joints: $\begin{array}{rl}V^{s}= & J^{s}(\theta) \dot{\theta} \\ \downarrow & \downarrow \\ b \times 1 & 6 \times n \quad n \times 1\end{array}$

Singularities

$$
\omega_{1}=\omega_{3}=\omega_{3}^{\prime}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \quad \underset{\text { fully collapsible }}{\text { (prismatic joints) }} \quad V_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$


$\theta_{1} \rightarrow$

fully collapsible robot arm

$$
\begin{array}{rc}
\omega_{2}=\omega_{2}^{\prime}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] & v_{2}^{\prime}=-\omega_{2}^{\prime} \times\left[\begin{array}{c}
\theta_{1} \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
0 \\
-\theta_{1} \\
0
\end{array}\right] \\
v_{3}^{\prime}=\left[\begin{array}{cc}
\cos \theta_{2} \\
\sin \theta_{2} \\
0
\end{array}\right] & J^{s}(\theta)=\left[\begin{array}{ccc}
1 & 0 & \cos \theta_{2} \\
0 & -\theta_{1} & \sin \theta_{2} \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
\end{array}
$$

Since $V^{s}=J^{s}(\theta) \dot{\theta}, J^{s}(\theta)$ provides info about the set of possible velocities of the end effector. Here, these $O^{\prime}$ 's tell us that the end effector will rever have translation in the $z$-direction or rotation about the $x$-or $y$-axes. This makes sense for a planar robot!

Now, let $\theta_{2}=0: \xi_{3}^{\prime}=\xi_{1} \Rightarrow J^{5}(\theta)=\left[\begin{array}{ccc}1 & 0 & 1 \\ 0 & -\theta_{1} & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$

The $a$ prismatic joints point in the same direction $\Rightarrow$ lose a degree of freedom!
This corresponds to a loss of rank of $J^{3}(\theta)$ : the span of output velocities has collapsed from 3 dimensions (timslation in the $x y$-plane and rotation about the $z$-axis) to 2 (tcuslation in the $x$-direction and coupled (rotation about $z$-axis, traslation in $y$-direction))

Bonus example
Returning to the 2 Do manipulator:


$$
\begin{aligned}
& \omega_{1}=\omega_{2}^{\prime}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \quad v_{1}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
& v_{2}^{\prime}=-\omega_{2}^{\prime} \times\left[\begin{array}{c}
l_{0} \cos \theta_{1} \\
l_{0} \sin \theta_{1} \\
0
\end{array}\right]=\left[\begin{array}{c}
l_{0} \sin \theta_{1} \\
-l_{0} \cos \theta_{1} \\
0
\end{array}\right]
\end{aligned}
$$

Now, let $\theta_{2}=0$ :
Visually, it looks like we have lost a Do in the output velocity
 space. But if we check the Jacobian, there's actually no depaderce on $\theta_{2}$ !

$$
J^{s}(\theta)=\left[\begin{array}{cc}
0 & l_{0} \sin \theta_{1} \\
0 & -l_{0} \cos \theta_{1} \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
1 & 1
\end{array}\right]
$$

We cans see that no matter the configuration of this arm, $J^{s}(\theta)$ mill always have rank 2. This is because even though both joints induce angular velocity, one of them also induces linear velocity, so between rotation and translation of the end effector we have 2 Do,

However, even though this configuration is not singular for $20 / 30$ twists, it does prevent translation in the $x$-direction. We cans alternatively define a Jacobian for 2D Cartesian velocities who rotation:

$$
\left[\begin{array}{l}
\dot{x} \\
\dot{y}
\end{array}\right]=J^{c}(\theta)\left[\begin{array}{l}
\dot{\theta}_{1} \\
\dot{\theta}_{2}
\end{array}\right]
$$

For this robot, from georvetry, we have $J^{\prime}(\theta)=\left[\begin{array}{cc}-l_{0} \sin \theta_{1}-l_{1} \sin \left(\theta_{1}+\theta_{2}\right), & -l_{1} \sin \left(\theta_{1}+\theta_{2}\right) \\ l_{0} \cos \theta_{1}+l_{1} \cos \left(\theta_{1}+\theta_{2}\right) & l_{1} \cos \left(\theta_{1}+\theta_{2}\right)\end{array}\right]$
and when $\theta_{2}=0, J^{\prime}(\theta)$ has rank 1 as expected!
For this class, you only reed to worry about the spatal/body twist Jacobians though!

