EECS C106A Discussion 6: Velocities and Adjoints

1 Representing Velocities

We have spoken about rigid body motion so far as a transformation between two points. The g matrix
relates the positions of two coordinate frames to one another. Often, we also want to talk about the
velocity, or the rate of change of the position of some point with respect to a given reference frame.

When dealing with robots, there are two reference frames that are relevant: the spatial and the body
frames.

e Let’s fix frame A and consider it our spatial frame (this might be our world frame).

e Let’s say frame B is moving - we’ll call this our body frame (this might be one of our robot
arms).

e Finally, let’s say we have some point ¢ that’s attached to B (this might be the tip of a gripper
attached to the arm).

Let’s try to find the velocity of the arbitrary point ¢q. Your intuition should tell you that the velocity of
the point ¢ with respect to frame B is just 0. Since ¢ and B are moving together, they have no velocity
with respect to each other. There are, however, other ways in which we can express the motion of ¢.

The velocity is the rate of change of its position with with respect to a reference frame. Thus, if we
have a frame called U, the velocity of the point ¢ with respect to U is ¢, (t), where g, (t) is the point’s
position with respect to U as a function of time. Now we have a time-dependent velocity vector ¢, (t)
in frame U.

However, this velocity vector can be viewed from any other frame V', and can therefore be expressed
from V. Recall that we can change the frame of reference if we have transformation g,,. When
representing velocities, it’s important to keep in mind that there are two (often different) frames that
are relevant.

2 Rigid Body Velocities

Let’s say we have a fixed frame A and a moving frame B. By construction, let’s also have point ¢
that’s attached to frame B. We call A the spatial coordinate frame, and B the body coordinate frame.

2.1 Spatial Velocity

Since frame B is moving, the transformation between A and B is time-dependent;:

gab(t) _ |:Ra8(t) pali(t):| (1)



Because q is fixed to frame B, its coordinates with respect to B, qp, are constant. Its coordinates in
frame A, however, are time-dependent:

qa(t) = gab(t)qp (2)

Problem: Differentiate the position ¢,(t) with respect to time to find its spatial velocity.

It turns out that gas(t)g,, (t) is a hat map, and we define it to be the spatial velocity ‘A/asb. Notice that
the spatial velocity is a twist, and the full expression ¢,(t) = ga;,(t)g;b1 (t)qq is a differential equation.
It turns out that twists can be interpreted as velocities and that velocities can be interpreted as twists!
You will explore this further in your homework.

Problem: Find the spatial velocity twist coordinates.



2.2 Body Velocity

Say we’d also like to express our velocity with respect to the body frame. Your intuition should tell you
that the velocity of the point ¢ with respect to frame B is just 0: since ¢ and B are moving together,
they have no velocity with respect to each other. Thus, the velocity of ¢ with respect to frame B is not
how we define the body velocity. Instead, we say that the body velocity is the velocity of the point ¢
relative to A, but now expressed in terms of B. As a result, it ends up being a simple coordinate frame
transformation of the velocity:

Vg, (t) = g;bl (t)vg, () (3)
Again, the notation in the textbook is a bit misleading, with vy (t) == ¢4 (t), but v, () # ¢ = 0.

We can also find a body velocity \A/abb (which is also a twist) such that

Vg (1) = Gap, (D, (1) = g0y (1)9ab B = Va0 (4)
H,C_/
=V,

Again, dropping the time dependency,

- PN RT Ra, RTp,
Tt = 0 (s = | Foifter b (5)
and the twist coordinates are , -
b _ | Yab| _ Rabpab
vi= i) = [t ©)



3 Example: One DOF Manipulator

Problem: Find the spatial and body velocities for the fized frame A and moving frame B.
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Figure 1: Rigid body motion by rotation about one joint

The following expressions from the forward kinematics might help:

cosf(t) —sinf(t) 0  —lasind(t)
sinf(t)  cosB(t) 0 Iy + lacosB(t)
gar(t) = | 0 1 lo
0 0 0 1
cosf  sinf 0 —l1sinb
—1_ |—sinf cosd 0 —ly—licost
Jab = | 0 0 1 —lo
0 0 0 1



3.1 Interpretation of Twist Coordinates

There’s actually a shorter method we can use to find the velocities. It’s based on the interpretation of
the twist coordinates as summarized in the following table:

Quantity | Interpretation
vy Velocity of a point at the origin of A if it were attached to the
moving frame B
wiy Angular velocity of B wrt frame A, viewed from A.
vl Velocity of origin of B wrt frame A, viewed from B.
w?, Angular velocity of B wrt frame A, viewed from B.

When the velocities are induced by revolute joints, we can imagine circular paths traced out by these
joints that help us figure out these values. Let’s see how this works with some examples:

Problem: Find the spatial and body velocity twists for the fized frame A and moving frame B in Fig.
1 (copied here) using the interpretation of twist coordinates.

E_'[ : IZ



Problem: Find the spatial and body velocity twists between A to B and also between B to C in Fig.
2 using the interpretation of twist coordinates.
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Figure 2: Rigid body motion by rotation about two joints.



4 Adjoint Transformations

The Adjoint transformation associated with g € SE(3) is a 6 x 6 matrix Ady and is defined as follows:

Ad, = [R pR}

0 R

The adjoint transformation is invertible and is used to map twists from one coordinate frame
to another: ¢ = Ady¢

Recall that spatial and body velocities are just twists with a coordinate frame transformation applied.
As a result, they are related by the adjoint. We have

; b
Véb = Adgab Vab

a

Written out, it takes the following form:

s _ vgb _ Rab ﬁabRab UZb _ b
ab — [ng] - |: 0 Rab :| |:wa - Adgabvab (7)
::Adgab

We can also write out the coordinate frame transformation in terms of the full twist matrix (rather
than the twist coordinates):

‘7asb = gab‘/};bg;bl (8)
Therefore, we have
Adge = (g-€-g71)" (9)
Ad, is invertible, and its inverse is
_ RL  —RLp
e (10)

4.1 Coordinate Transformations

We don’t compose velocities in the same way as with rigid body transformations—we need to use the
adjoints. For spatial velocity composition, we have:

Ve = Vap + Adg,, Vi (11)
And with body velocity composition,

Vo = Ad 2 V3 + Vi, (12)

Extra practice: Using your solutions to Problem 3 and the appropriate adjoint transformation, find
V. in Fig. 2. Your answer should match the solution to Example 2.6 on page 60 in MLS (page 78 in
the PDF on the course website).



Problem: Prove MLS Proposition 2.15: V? = Adgb—l vh+VE.

Hint: It may help to take the “hat” of the velocity and use the fact that gae = gapgpe. Also, (AB)™! =
BlA-!



