
EE106A Discussion 5: Vision

1 Convolutions

A convolution is the treatment of one matrix M (the original image) by another usually smaller
one K (the kernel). The result of a convolution is a filtered image matrix K ∗ M . The convolution
is performed by sliding the kernel over the original image and taking the matrix dot product of the
kernel and the part of original matrix that it covers. Let’s look at an example:

Figure 1: Example of a convolution.

Problem 1. If the original matrix has dimensions m× n and the kernel has dimensions p× q, what
will be the size of the matrix resulting from the convolution?
The size of the resulting matrix is exactly how many times the kernel can cover a unique portion of
the original image. Thus, the resulting matrix will have size (m− p+ 1)× (n− q + 1).
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Problem 2. Convolution kernels are useful for applying effects to images and extracting features for
machine learning. Match the resulting image to the kernel applied as well as the name of its effect.

Result

Kernel 1
9

1 1 1
1 1 1
1 1 1

 0 0 0
0 1 0
0 0 0

  0 −1 0
−1 5 −1
0 −1 0



Name of effect Box Blur Identity Sharpen

Kernels: { 0 −1 0
−1 5 −1
0 −1 0

 ,

0 0 0
0 1 0
0 0 0

 ,
1

9

1 1 1
1 1 1
1 1 1

}

Names of effects:
{
Identity, Box Blur, Sharpen

}
We can obtain a Gaussian kernel by sampling the values of a 2D Gaussian at discrete (x, y) points.

Kg =


4.4e−5 1.3e−3 4.0e−3 1.3e−3 4.4e−5
1.3e−3 3.8e−2 1.2e−1 3.8e−2 1.3e−3
4.0e−3 1.2e−1 3.6e−1 1.2e−1 4.0e−3
1.3e−3 3.8e−2 1.2e−1 3.8e−2 1.3e−3
4.4e−5 1.3e−3 4.0e−3 1.3e−3 4.4e−5



Problem 3. What effect would a Gaussian kernel have on an image?
Similarly to the box blur filter, the Gaussian kernel blurs/smooths the image. However, it has a
number of nice properties that mean you should always use it for smoothing instead of the box blur.
Intuitively, these properties stem from the fact that pixels that are further away from the center pixel
have less influence on the final result.
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1.1 Derivative-of-Gaussian Kernels

In addition to applying effects to images, convolution kernels can be used to approximate the horizontal
and vertical derivatives at each point in an image. The simplest choice of filter for approximating the
horizontal derivative has the form:

Kx =

−1 0 +1
−1 0 +1
−1 0 +1

 ,

But this tends to be very sensitive to noise. To smooth out the noise, we could apply a Gaussian blur
kernel as well as the derivative kernel. But since the derivative and convolution operations commute,
it’s more computationally efficient to combine these into a single operation by making a new filter
based on the directional derivative of the Gaussian kernel:

Kgx =


−7.2e−5 −1.1e−3 0.0e0 1.1e−3 7.2e−5
−2.1e−3 −3.1e−2 0.0e0 3.1e−2 2.1e−3
−6.5e−3 −9.5e−2 0.0e0 9.5e−2 6.5e−3
−2.1e−3 −3.1e−2 0.0e0 3.1e−2 2.1e−3
−7.2e−5 −1.1e−3 0.0e0 1.1e−3 7.2e−5

 ,

Problem 4. How could we change Kgx to obtain Kgy for the vertical derivative?
We can simply take the transpose: Kgy = KT

gx

We can combine the horizontal and vertical derivatives into G to approximate the overall gradient of
the image:

G =
√

K2
gx +K2

gy

Problem 5. How is G useful in edge detection?
Edges are points on an image at which the gradients are high (i.e. large changes in neighboring pixels).
Thus, we can use G to read off the gradients at each pixel location, and the ones with higher gradients
are points that are more likely to be on edges.
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2 Pinhole Camera Model

When we take a 2D picture, we are essentially transforming points in the real 3D world to points on a
2D image. Let’s see if we can work out what this transformation is, which we call the intrinsic camera
matrix. To do so, we model our camera as a standard pinhole model camera, in which light rays from
the real world are projected onto an image plane and there is no lens involved.

Figure 2: A pinhole camera projects a 3D object into a 2D image.

Let’s look at Fig. 2 to derive our matrix. We have two frames of reference here. One is the camera
frame with axes Xcam, Ycam, Zcam from which 3D locations can be expressed. For example, point p
has position (X,Y, Z).

We have another 2D frame of reference in the image plane with axes Xi, Yi. The point p projected
onto the image frame has coordinates (u, v) in this image frame.

Problem 6. Write expressions for u and v as functions of the 3D position (X,Y, Z) and the focal
length f .
By similar triangles,

u =
X

Z
f

v =
Y

Z
f
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2.1 Scaling

In the real world, there may be scaling effects present that may differ for the horizontal and vertical
directions. This is as if f is scaled by a factor sx when doing projections in the x direction, and scaled
by sy when doing projections in the y direction. Thus, we replace the f in the expressions for u and
v by fx := sx · f and fy := sy · f respectively.

Problem 7. Update the expressions for u and v using fx and fy instead of f .

u =
X

Z
fx

v =
Y

Z
fy

Note that fx and fy are not the focal length in the x and y directions - the focal length is a constant!
Instead, sx and sy capture the idea that pixels may not be square due to physical properties of the
camera.

2.2 Translation of origin

In computer vision, the origin of a 2D image may not actually lie on the principal point. Thus, let’s
allow the image frame with axes Xi, Yi be free to move around, such that the principal point is now
at an arbitrary coordinate (xo, yo).

Problem 8. Update the expressions for u and v to take into account this arbitrary origin shift.

u =
X

Z
fx + xo

v =
Y

Z
fy + yo

2.3 Homogeneous coordinates

We define a clever way to express 2D coordinates in the image plane with three dimensions. We do

this by appending a w to the end of the vector and dividing u and v by this w. That is,

[
u
v

]
turns

into

u′

v′

w

 where

[
u
v

]
= 1

w

[
u′

v′

]
.

Problem 9. In homogeneous coordinates where w is set to be Z, find the intrinsic camera matrix that
maps a real 3D point to a point in the image plane.u′

v′

Z

 =

fx 0 xo

0 fy yo
0 0 1


︸ ︷︷ ︸

intrinsic camera matrix

XY
Z


Problem 10. What happens if the 3D point is scaled by a factor of lambda?
When we multiply the point by the intrinsic camera matrix, we get [λu′, λv′, λZ]T for our image
plane point. However, since we divide the first two elements by the third to recover the image plane
coordinates, this doesn’t affect the location of the point on the image plane! Intuitively, this is because
larger objects further away are indistinguishable from smaller ones closer up.
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