
EE106A Discussion 4: Inverse Kinematics

1 Inverse kinematics

In forward kinematics, we found the expression for gst(θ) as a function of θ. Now, in inverse kinematics,
we are given a desired configuration of the tool frame gd, and we wish to find the set of θs for which

eξ̂1θ1 ...eξ̂nθngst(0) = gst(θ) = gd (1)

2 Padan-Kahan subproblems

To solve the inverse kinematics problem, one technique is to distill it into the following three simpler
subproblems for which we know the solutions.

2.1 Subproblem 1: Rotation about a single axis

Let ξ be a zero-pitch twist (revolute joint) along ω with unit magnitude, and p, q ∈ R3 be two points.
If our expression is in the form of

eξ̂θp = q

we can uniquely find our θ (1 solution).

Figure 1: Subproblem 1: a) Rotate p about the axis of ξ until it is coincident with q. b) Projection of
u and v onto the plane perpendicular to the twist axis.

By the projection formula, u′ = u− ωωTu and v′ = v − ωωT v.

By definition of the cross and dot products respectively, u′ × v′ = ωsinθ||u′||||v′|| and u′ · v′ =
cosθ||u′||||v′||. Given that ||ω|| = 1, we multiple both sides of the cross product equation by ωT and
divide the two equations to get that θ = atan2(ωT (u′ × v′), u′ · v′)

2.2 Subproblem 2: Rotation about two subsequent axes

Let ξ1 and ξ2 be two zero-pitch, unit magnitude twists (revolute joints) with intersecting axes, and p,
q ∈ R3 be two points. We can find θ1 and θ2 if our expression is in the form of

eξ̂1θ1eξ̂2θ2p = q

1



Figure 2: Subproblem 2: Rotate p around the axis of ξ2, then around the axis of ξ1 such that the final
location is coincident with q.

Geometrically, when does there exist zero, one, or multiple solutions to this subproblem?
When the two circles intersect zero, one, or two times respectively.

2.3 Subproblem 3: Rotation to a given distance

Let ξ be a zero-pitch, unit magnitude twist (revolute joint), p, q ∈ R3 be two points, and δ > 0. We
can find θ if our expression has the following form:

||q − eξ̂θp|| = δ or ||eξ̂θp− q|| = δ (2)

Figure 3: Subproblem 3: a) Rotate p about the axis of ξ until it is a distance δ from point q. b)
Projection onto plane perpendicular to axis.

• Geometrically, when does there exist zero, one, or multiple solutions to this subproblem?
When the circle formed by p’s rotation about ξ intersects the sphere of radius δ with center q zero,
one, or two times respectively.
To find the solution for θ, we calculate

u′ = u− ωωTu

v′ = v − ωωT v

δ = ||v′ − eω̂θu′||
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Using the same idea as in subproblem 1, we have that

θ0 = atan2(ωT (u′ × v′), u′ · v′)

By the law of cosines,
δ′2 = ||u′||2 + ||v′||2 − 2||u′||||v′||cos(θ0 − θ)

so

θ = θ0 ± cos−1

(
||u′||2 + ||v′||2 − δ′2

2||u′||||v′||

)

3 Using PK subproblems to solve inverse kinematics

We want to simplify complete inverse kinematics problems into the three subproblems we know how
to solve. The full equation becomes more simplified when we apply the kinematics equations to special
points.

3.1 Trick 1: Apply equations to a point on the axes

If we have a revolute twist ξ and we have a point p on the twist axis, applying the transformation on
that point does nothing to it, ie:

eξ̂θp = p (3)

For example, if our IK problem is

eξ̂1θ1eξ̂2θ2eξ̂3θ3 = g (4)

then choosing a point p on the axis of ξ3 yields

eξ̂1θ1eξ̂2θ2p = gp (5)

and this is simply Subproblem 2.

3.2 Trick 2: Subtract a point from both sides and take the norm

Remember that rigid motions preserve norm. For example, say we wish to solve the same IK problem
as in Eq. 4. If the axes of ξ1 and ξ2 intersect at a point q, we can select a point p that is not on the
axis of ξ3 and simplify to the following:

δ := ||gp− q|| = ||eξ̂1θ1eξ̂2θ2eξ̂3θ3p− q||

= ||eξ̂1θ1eξ̂2θ2(eξ̂3θ3p− q)||

= ||eξ̂3θ3p− q||

(6)

which is just Subproblem 3.

3.3 Trick 3: Prismatic or Screw Joints

It’s best to solve these first in general. Use Trick 2 to arrive at the following form:

||eξ̂3θ3p− q|| = δ

Then, you have δ = l0 + θ, where l0 is the original extension of the arm. You can directly calculate
θ = δ − l0. If the joint is a screw, you need to be careful about which distance to use for δ (only
considering the translation component) and account for your pitch h.
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4 SCARA manipulator example

Break down the the inverse kinematics for the SCARA manipulator in Fig. 4 into simpler PK sub-
problems.

Figure 4: SCARA manipulator.

Step 1: Solve for θ4
The forward kinematics equation for the SCARA manipulator is

gst(θ) = eξ̂1θ1 . . . eξ̂4θ4gst(0) = gd

We can visually see that the only joint that affects the z-position of the end effector is ξ4. As a result,
θ4 = z − l0, where z comes from gst(θ).

Step 2: Solve for θ2
Once θ4 is known, we can rearrange the FK equation to read

eξ̂1θ1eξ̂2θ2 . . . eξ̂3θ3 = gdg
−1
st (0)e−ξ̂4θ4 =: g1

Let q3 be a point on the axis of ξ3 and q1 be a point on the axis of ξ1. (Trick 2) Applying the equation
above to q3, subtracting q1 from both sides, and applying norms, we get

||eξ̂1θ1eξ̂2θ2eξ̂3θ3q3 − q1|| = ||eξ̂1θ1eξ̂2θ2q3 − q1||

= ||eξ̂1θ1(eξ̂2θ2q3 − q1)||

= ||eξ̂1θ1(eξ̂2θ2q3 − q1)||

= ||eξ̂2θ2q3 − q1||
= ||g1q3 − q1|| = δ

This is exactly in the form of Subproblem 3 and gives us the value of θ2!

Step 3: Solve for θ1
We can now find θ1 by applying the FK equation to a point on the axis of ξ3:

eξ̂1θ1eξ̂2θ2eξ̂3θ3q3 = eξ̂1θ1(eξ̂2θ2q3) = g1q3

This is in the form of Subproblem 1!

Step 4: Solve for θ3
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Finally, we arrange the equations to shift the known θ1 and θ2 to the right-hand side:

eξ̂3θ3 = e−ξ̂2θ2e−ξ̂1θ1gdg
−1
st (θ)e−ξ̂4θ4

We can apply this equation to any point p that’s not on the axis of ξ3 and apply Subproblem 1 to find
our answer!

The total number of possible solutions will be 1× 2× 1× 1 = 2.
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5 Elbow manipulator example

Break down the inverse kinematics for the elbow manipulator in Fig. 5 into simpler PK subproblems.
Find the reachable and dexterous workspaces.

Figure 5: Elbow manipulator.

The dexterous workspace is a hollow sphere with inner radius l1 − l2 and outer radius l1 + l2. This is
the same as the reachable workspace because our wrist is fully dexterous.

The elbow manipulator in 5 consists of a three degree of freedom manipulator with a spherical wrist.
This special structure simplifies the inverse kinematics and fits nicely with the subproblems presented
earlier. The equation we wish to solve is

gst(θ) = eξ̂1θ1 . . . eξ̂6θ6gst(0) = gd

where gd ∈ SE(3) is the desired configuration of the tool frame. Postmultiplying this equation by
g−1
st (0) isolates the exponential maps:

eξ̂1θ1 . . . eξ̂6θ6 = gdg
−1
st (0) =: g1

We determine the requisite joint angles in four steps:

Step 1: Solve for the elbow angle, θ3
Apply both sides of the above equation to a point pw ∈ R3, which is the common point of intersection
for the wrist axes (trick 1). Since exp(ξ̂θ)pw = pw if pw is on the axis of ξ, this yields

eξ̂1θ1eξ̂2θ2eξ̂3θ3pw = g1pw

Subtract from both sides of equation a point pB , which is at the intersection of the first two axes:

eξ̂1θ1eξ̂2θ2eξ̂3θ3pw − pb = eξ̂1θ1eξ̂2θ2(eξ̂3θ3pw − pb) = g1pw − pb

Using the property that the distance between points is preserved by rigid motions, take the magnitude
of both sides of the equation:

||g1pw − pb|| = ||eξ̂3θ3pw − pb||

This is in the form of Subproblem 3! We can apply the subproblem and solve for θ3.

Step 2: Solve for θ1 and θ2
Since θ3 is known, the equation above becomes

eξ̂1θ1eξ̂2θ2(eξ̂3θ3pw) = g1pw
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We can now apply Subproblem 2! p = eξ̂3θ3pw and q = g1pw.

Step 3: Solve for 2 of the 3 wrist angles
The remaining kinematics can be written as

eξ̂4θ4eξ̂5θ5eξ̂6θ6 = e−ξ̂1θ1e−ξ̂2θ2e−ξ̂3θ3gdg
−1
st (0) =: g2

Apply both sides of the equation to a point p that is on the axis of ξ6 but not on the ξ4, ξ5 axes. This
gives

eξ̂4θ4eξ̂5θ5p = g2p

We can now just apply Subproblem 2 to find θ4 and θ5

Step 4: Solve for the remaining wrist angle
The only remaining unknown is θ6. Rearranging the kinematics equation and applying both sides to
any point p that is not on the axis of ξ6,

eξ̂6θ6 = e−ξ̂5θ5e−ξ̂4θ4 . . . e−ξ̂1θ1gdg
−1
st (0)p =: q

We can just apply Subproblem 1 to find θ6!

The total number of solutions is 2× 2× 2 = 8.
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