EE106A Discussion 4: Inverse Kinematics

1 Inverse kinematics

In forward kinematics, we found the expression for $g_{s t}(\theta)$ as a function of θ. Now, in inverse kinematics, we are given a desired configuration of the tool frame g_{d}, and we wish to find the set of $\theta \mathrm{s}$ for which

$$
\begin{equation*}
e^{\widehat{\xi_{1} \theta_{1}}} \ldots e^{\widehat{\xi_{n}} \theta_{n}} g_{s t}(0)=g_{s t}(\theta)=g_{d} \tag{1}
\end{equation*}
$$

2 Padan-Kahan subproblems

To solve the inverse kinematics problem, one technique is to distill it into the following three simpler subproblems for which we know the solutions.

2.1 Subproblem 1: Rotation about a single axis

Let ξ be a zero-pitch twist (revolute joint) along ω with unit magnitude, and $p, q \in \mathbb{R}^{3}$ be two points. If our expression is in the form of

$$
e^{\widehat{\xi} \theta} p=q
$$

we can uniquely find our θ (1 solution).

(a)

(b)

Figure 1: Subproblem 1: a) Rotate p about the axis of ξ until it is coincident with q. b) Projection of u and v onto the plane perpendicular to the twist axis.

By the projection formula, $u^{\prime}=u-\omega \omega^{T} u$ and $v^{\prime}=v-\omega \omega^{T} v$.
By definition of the cross and dot products respectively, $u^{\prime} \times v^{\prime}=\omega \sin \theta\left\|u^{\prime}\right\|\left\|v^{\prime}\right\|$ and $u^{\prime} \cdot v^{\prime}=$ $\cos \theta\left\|u^{\prime}\right\|\left\|v^{\prime}\right\|$. Given that $\|\omega\|=1$, we multiple both sides of the cross product equation by ω^{T} and divide the two equations to get that $\theta=\operatorname{atan} 2\left(\omega^{T}\left(u^{\prime} \times v^{\prime}\right), u^{\prime} \cdot v^{\prime}\right)$

2.2 Subproblem 2: Rotation about two subsequent axes

Let ξ_{1} and ξ_{2} be two zero-pitch, unit magnitude twists (revolute joints) with intersecting axes, and p, $q \in \mathbb{R}^{3}$ be two points. We can find θ_{1} and θ_{2} if our expression is in the form of

$$
e^{\widehat{\xi}_{1} \theta_{1}} e^{\widehat{\xi}_{2} \theta_{2}} p=q
$$

Figure 2: Subproblem 2: Rotate p around the axis of ξ_{2}, then around the axis of ξ_{1} such that the final location is coincident with q.

Geometrically, when does there exist zero, one, or multiple solutions to this subproblem? When the two circles intersect zero, one, or two times respectively.

2.3 Subproblem 3: Rotation to a given distance

Let ξ be a zero-pitch, unit magnitude twist (revolute joint), $p, q \in \mathbb{R}^{3}$ be two points, and $\delta>0$. We can find θ if our expression has the following form:

$$
\begin{equation*}
\left\|q-e^{\widehat{\xi} \theta} p\right\|=\delta \text { or }\left\|e^{\widehat{\xi} \theta} p-q\right\|=\delta \tag{2}
\end{equation*}
$$

Figure 3: Subproblem 3: a) Rotate p about the axis of ξ until it is a distance δ from point q. b) Projection onto plane perpendicular to axis.

- Geometrically, when does there exist zero, one, or multiple solutions to this subproblem?

When the circle formed by p 's rotation about ξ intersects the sphere of radius δ with center q zero, one, or two times respectively.
To find the solution for θ, we calculate

$$
\begin{gathered}
u^{\prime}=u-\omega \omega^{T} u \\
v^{\prime}=v-\omega \omega^{T} v \\
\delta=\left\|v^{\prime}-e^{\widehat{\omega} \theta} u^{\prime}\right\|
\end{gathered}
$$

Using the same idea as in subproblem 1, we have that

$$
\theta_{0}=\operatorname{atan} 2\left(\omega^{T}\left(u^{\prime} \times v^{\prime}\right), u^{\prime} \cdot v^{\prime}\right)
$$

By the law of cosines,

$$
\delta^{\prime 2}=\left\|u^{\prime}\right\|^{2}+\left\|v^{\prime}\right\|^{2}-2\left\|u^{\prime}\right\|\left\|v^{\prime}\right\| \cos \left(\theta_{0}-\theta\right)
$$

SO

$$
\theta=\theta_{0} \pm \cos ^{-1}\left(\frac{\left\|u^{\prime}\right\|^{2}+\left\|v^{\prime}\right\|^{2}-\delta^{\prime 2}}{2\left\|u^{\prime}\right\|\left\|v^{\prime}\right\|}\right)
$$

3 Using PK subproblems to solve inverse kinematics

We want to simplify complete inverse kinematics problems into the three subproblems we know how to solve. The full equation becomes more simplified when we apply the kinematics equations to special points.

3.1 Trick 1: Apply equations to a point on the axes

If we have a revolute twist ξ and we have a point p on the twist axis, applying the transformation on that point does nothing to it, ie:

$$
\begin{equation*}
e^{\widehat{\xi} \theta} p=p \tag{3}
\end{equation*}
$$

For example, if our IK problem is

$$
\begin{equation*}
e^{\widehat{\xi_{1} \theta_{1}}} e^{\widehat{\xi_{2} \theta_{2}}} e^{\widehat{\xi_{3} \theta_{3}}}=g \tag{4}
\end{equation*}
$$

then choosing a point p on the axis of ξ_{3} yields

$$
\begin{equation*}
e^{\widehat{\xi_{1} \theta_{1}}} e^{\widehat{\xi_{2} \theta_{2}}} p=g p \tag{5}
\end{equation*}
$$

and this is simply Subproblem 2.

3.2 Trick 2: Subtract a point from both sides and take the norm

Remember that rigid motions preserve norm. For example, say we wish to solve the same IK problem as in Eq. 4. If the axes of ξ_{1} and ξ_{2} intersect at a point q, we can select a point p that is not on the axis of ξ_{3} and simplify to the following:

$$
\begin{align*}
\delta:=\|g p-q\| & =\left\|e^{\widehat{\xi_{1}} \theta_{1}} e^{\widehat{\xi_{2}} \theta_{2}} e^{\widehat{\xi_{3} \theta_{3}}} p-q\right\| \\
& =\left\|e^{\widehat{\xi_{1}} \theta_{1}} e^{\widehat{\xi_{2}} \theta_{2}}\left(e^{\widehat{\xi_{3}} \theta_{3}} p-q\right)\right\| \tag{6}\\
& =\left\|e^{\widehat{\xi_{3}} \theta_{3}} p-q\right\|
\end{align*}
$$

which is just Subproblem 3.

3.3 Trick 3: Prismatic or Screw Joints

It's best to solve these first in general. Use Trick 2 to arrive at the following form:

$$
\left\|e^{\widehat{\xi_{3}} \theta_{3}} p-q\right\|=\delta
$$

Then, you have $\delta=l_{0}+\theta$, where l_{0} is the original extension of the arm. You can directly calculate $\theta=\delta-l_{0}$. If the joint is a screw, you need to be careful about which distance to use for δ (only considering the translation component) and account for your pitch h.

4 SCARA manipulator example

Break down the the inverse kinematics for the SCARA manipulator in Fig. 4 into simpler PK subproblems.

Figure 4: SCARA manipulator.

Step 1: Solve for θ_{4}
The forward kinematics equation for the SCARA manipulator is

$$
g_{s t}(\theta)=e^{\hat{\xi}_{1} \theta_{1}} \ldots e^{\hat{\xi}_{4} \theta_{4}} g_{s t}(0)=g_{d}
$$

We can visually see that the only joint that affects the z-position of the end effector is ξ_{4}. As a result, $\theta_{4}=z-l_{0}$, where z comes from $g_{s t}(\theta)$.

Step 2: Solve for θ_{2}
Once θ_{4} is known, we can rearrange the FK equation to read

$$
e^{\hat{\xi}_{1} \theta_{1}} e^{\hat{\xi}_{2} \theta_{2}} \ldots e^{\hat{\xi}_{3} \theta_{3}}=g_{d} g_{s t}^{-1}(0) e^{-\hat{\xi}_{4} \theta_{4}}=: g_{1}
$$

Let q_{3} be a point on the axis of ξ_{3} and q_{1} be a point on the axis of ξ_{1}. (Trick 2) Applying the equation above to q_{3}, subtracting q_{1} from both sides, and applying norms, we get

$$
\begin{aligned}
\left\|e^{\hat{\xi}_{1} \theta_{1}} e^{\hat{\xi}_{2} \theta_{2}} e^{\hat{\xi}_{3} \theta_{3}} q_{3}-q_{1}\right\| & =\left\|e^{\hat{\xi}_{1} \theta_{1}} e^{\hat{\xi}_{2} \theta_{2}} q_{3}-q_{1}\right\| \\
& =\left\|e^{\hat{\xi}_{1} \theta_{1}}\left(e^{\hat{\xi}_{2} \theta_{2}} q_{3}-q_{1}\right)\right\| \\
& =\left\|e^{\hat{\xi}_{1} \theta_{1}}\left(e^{\hat{\xi}_{2} \theta_{2}} q_{3}-q_{1}\right)\right\| \\
& =\left\|e^{\hat{\xi}_{2} \theta_{2}} q_{3}-q_{1}\right\| \\
& =\left\|g_{1} q_{3}-q_{1}\right\|=\delta
\end{aligned}
$$

This is exactly in the form of Subproblem 3 and gives us the value of θ_{2} !
Step 3: Solve for θ_{1}
We can now find θ_{1} by applying the FK equation to a point on the axis of ξ_{3} :

$$
e^{\hat{\xi}_{1} \theta_{1}} e^{\hat{\xi}_{2} \theta_{2}} e^{\hat{\xi}_{3} \theta_{3}} q_{3}=e^{\hat{\xi}_{1} \theta_{1}}\left(e^{\hat{\xi}_{2} \theta_{2}} q_{3}\right)=g_{1} q_{3}
$$

This is in the form of Subproblem 1!
Step 4: Solve for θ_{3}

Finally, we arrange the equations to shift the known θ_{1} and θ_{2} to the right-hand side:

$$
e^{\hat{\xi}_{3} \theta_{3}}=e^{-\hat{\xi}_{2} \theta_{2}} e^{-\hat{\xi}_{1} \theta_{1}} g_{d} g_{s t}^{-1}(\theta) e^{-\hat{\xi}_{4} \theta_{4}}
$$

We can apply this equation to any point p that's not on the axis of ξ_{3} and apply Subproblem 1 to find our answer!

The total number of possible solutions will be $1 \times 2 \times 1 \times 1=2$.

5 Elbow manipulator example

Break down the inverse kinematics for the elbow manipulator in Fig. 5 into simpler PK subproblems. Find the reachable and dexterous workspaces.

Figure 5: Elbow manipulator.

The dexterous workspace is a hollow sphere with inner radius $l_{1}-l_{2}$ and outer radius $l_{1}+l_{2}$. This is the same as the reachable workspace because our wrist is fully dexterous.

The elbow manipulator in 5 consists of a three degree of freedom manipulator with a spherical wrist. This special structure simplifies the inverse kinematics and fits nicely with the subproblems presented earlier. The equation we wish to solve is

$$
g s t(\theta)=e^{\hat{\xi}_{1} \theta_{1}} \ldots e^{\hat{\xi}_{6} \theta_{6}} g_{s t}(0)=g_{d}
$$

where $g_{d} \in S E(3)$ is the desired configuration of the tool frame. Postmultiplying this equation by $g_{s t}^{-1}(0)$ isolates the exponential maps:

$$
e^{\hat{\xi}_{1} \theta_{1}} \ldots e^{\hat{e}_{6} \theta_{6}}=g_{d} g_{s t}^{-1}(0)=: g_{1}
$$

We determine the requisite joint angles in four steps:
Step 1: Solve for the elbow angle, θ_{3}
Apply both sides of the above equation to a point $p_{w} \in \mathbb{R}^{3}$, which is the common point of intersection for the wrist axes (trick 1). Since $\exp (\hat{\xi} \theta) p_{w}=p_{w}$ if pw is on the axis of ξ, this yields

$$
e^{\hat{\xi}_{1} \theta_{1}} e^{\hat{\xi}_{2} \theta_{2}} e^{\hat{\xi}_{3} \theta_{3}} p_{w}=g_{1} p_{w}
$$

Subtract from both sides of equation a point p_{B}, which is at the intersection of the first two axes:

$$
e^{\hat{\xi}_{1} \theta_{1}} e^{\hat{\xi}_{2} \theta_{2}} e^{\hat{\xi}_{3} \theta_{3}} p_{w}-p_{b}=e^{\hat{\xi}_{1} \theta_{1}} e^{\hat{\xi}_{2} \theta_{2}}\left(e^{\hat{\xi}_{3} \theta_{3}} p_{w}-p_{b}\right)=g_{1} p_{w}-p_{b}
$$

Using the property that the distance between points is preserved by rigid motions, take the magnitude of both sides of the equation:

$$
\left\|g_{1} p_{w}-p_{b}\right\|=\left\|e^{\hat{\xi}_{3} \theta_{3}} p_{w}-p_{b}\right\|
$$

This is in the form of Subproblem 3! We can apply the subproblem and solve for θ_{3}.
Step 2: Solve for θ_{1} and θ_{2}
Since θ_{3} is known, the equation above becomes

$$
e^{\hat{\xi}_{1} \theta_{1}} e^{\hat{\xi}_{2} \theta_{2}}\left(e^{\hat{\xi}_{3} \theta_{3}} p_{w}\right)=g_{1} p_{w}
$$

We can now apply Subproblem $2!p=e^{\hat{\xi}_{3} \theta_{3}} p_{w}$ and $q=g_{1} p_{w}$.
Step 3: Solve for 2 of the 3 wrist angles
The remaining kinematics can be written as

$$
e^{\hat{\xi}_{4} \theta_{4}} e^{\hat{\xi}_{5} \theta_{5}} e^{\hat{\xi}_{6} \theta_{6}}=e^{-\hat{\xi}_{1} \theta_{1}} e^{-\hat{\xi}_{2} \theta_{2}} e^{-\hat{\xi}_{3} \theta_{3}} g_{d} g_{s t}^{-1}(0)=: g_{2}
$$

Apply both sides of the equation to a point p that is on the axis of ξ_{6} but not on the ξ_{4}, ξ_{5} axes. This gives

$$
e^{\hat{\xi}_{4} \theta_{4}} e^{\hat{\xi}_{5} \theta_{5}} p=g_{2} p
$$

We can now just apply Subproblem 2 to find θ_{4} and θ_{5}
Step 4: Solve for the remaining wrist angle
The only remaining unknown is θ_{6}. Rearranging the kinematics equation and applying both sides to any point p that is not on the axis of ξ_{6},

$$
e^{\hat{\xi}_{6} \theta_{6}}=e^{-\hat{\xi}_{5} \theta_{5}} e^{-\hat{\xi}_{4} \theta_{4}} \ldots e^{-\hat{\xi}_{1} \theta_{1}} g_{d} g_{s t}^{-1}(0) p=: q
$$

We can just apply Subproblem 1 to find θ_{6} !
The total number of solutions is $2 \times 2 \times 2=8$.

