EE106A Discussion 4: Inverse Kinematics

1 Inverse kinematics

In forward kinematics, we found the expression for $g_{s t}(\theta)$ as a function of θ. Now, in inverse kinematics, we are given a desired configuration of the tool frame g_{d}, and we wish to find the set of θ s for which

Given:

- Desired configuration
- We know where we want our tool to end up
- Ex. In position to grab a box on the table

- Also know details about the robot itself
- le., we know the twists and starting configuration

$$
\xi_{1} \cdots \xi_{\sim} \quad g_{S T}(0)
$$

Desired:

- How do we angle each individual joint to get us there?
- Allow us to move the robot to position it properly
- Find thetas

$$
\theta_{1} \ldots \theta_{n}
$$

2 Padan-Kahan subproblems

To solve the inverse kinematics problem, one technique is to distill it into the following three simpler subproblems for which we know the solutions.

- We know the solutions to some basic inverse kinematics problems
- If our problem is in the from of one of these basic ones, we can find theta
- Can we reduce the super complicated robot problem down to the basic ones?
\& Only revolute axes Subproblems Overview
- Subproblem 1
\circ Rotate about some fixed axis $\zeta=\left[\begin{array}{l}v \\ w\end{array}\right]=\left[\begin{array}{l}0 \\ w\end{array}\right]$
- Pure rotation about axis

Find θ

$$
e^{\hat{\hat{\xi}} \theta} \cdot p=q
$$

$\leqslant 1$ Solution
Need to specify p, q
$\theta=\operatorname{atan} 2\left(\omega^{\top}\left(u^{\prime} \times v^{\prime}\right), u^{\prime} \cdot v^{\prime}\right)$
(Won't need to ever compute this)

- Subproblem 2
- Rotate about 2 intersecting axes

$\theta_{1}, \theta_{2}=\$$ see textbook
- Subproblem 3
- Move one point to a specified distance from another

$$
\left\|\underset{\downarrow}{e^{\hat{\xi}_{1} \theta_{1}} p}-q\right\|=\delta
$$

Distance btwn. rotated $p \& q$

$$
\underset{8}{\longrightarrow} q
$$

$$
\begin{aligned}
& \leq 2 \text { sols } \\
& 0: \\
& \therefore \\
& \theta=\text { see worksheet } \\
& \text { 1: ニ- } \underset{\delta}{\longrightarrow} q \\
& \text { 2: }-\underset{-\underset{\delta}{-\delta}}{\underset{\delta}{\delta}} q
\end{aligned}
$$

Okay, so we know we can solve these subproblems. How does that help me with a large robot?

Great question. Our goal is to try to reduce the number of unknowns.

- Use specially chosen points
- Reduce the problem to only 1 or 2 unknown thetas
- Apply subproblem to solve for remaining variables

Tricks

$$
e^{\hat{\xi}_{1} \theta_{1}} \cdots e^{\hat{\xi}_{n} \theta_{n}} g_{s t}(0)=g \longrightarrow F K \text { solution }
$$

Rearrange $\longrightarrow g_{s t}(0)$ is known \& invertible

$$
e^{\hat{\xi}_{1} \theta_{1}} \cdots e^{\hat{\xi}_{n} \theta_{n}}=g_{d} g_{s t}^{-1}(0):=g_{1}
$$

Trick \#1: Choose a clever point (eliminate variables from RHS) our prod. of exps.

$$
\begin{aligned}
& \text { 音 } \\
& e^{\hat{\xi} \theta} p=P \\
& \longrightarrow p \text { is on the axis } \\
& \text { Rotation wont change location of } P \\
& e^{\hat{r}_{3} \theta_{3}} q=g_{i} q \rightarrow \theta_{3} \omega / S P 1
\end{aligned}
$$

Trick 2: Subtract a point from both sides and take norm (eliminate variables from LHS)

$$
e^{\hat{\xi}_{1} \theta_{1}} e^{\hat{\xi}_{2} \theta_{2}}=g
$$

- q on axis of joint 1
- p not on axis of joint 2

$$
\begin{aligned}
& e^{\hat{\beta}_{1} \theta_{1}} e^{\hat{\beta}_{2} \theta_{2}} \cdot p-q=g p-q \\
& e^{\hat{z}_{1} \theta_{1}}\left(e_{p}^{\hat{z}_{2} \theta_{2}}-q\right)=g p-q \\
& \| \operatorname{Rigid~body~}_{e^{\hat{i}_{1} \theta_{1}}\left(\frac{\left.e^{\hat{i}_{2} \theta_{2}} p-q\right)}{\text { Vector }}\|=\| g p-q \|\right.}^{\left(\varepsilon_{1}\right)} \\
& \left\|e^{\hat{r}_{2} \theta_{2}} p-q\right\|=\underbrace{\|g p-q\|}_{\text {known scalar }}=\delta \\
& \text { Use } s p 3 \text { to solve } \theta_{2}
\end{aligned}
$$

Trick 3: Prismatic Joints

- Good to solve these $1^{\text {st }}$
- Use geometry of robot
q

Get to this form w/ trice 2 :

$$
\begin{gathered}
\left\|e^{\hat{\xi} \theta} p-q\right\|=\delta \\
\delta=l_{1}+\theta \\
\theta=\delta-l_{1}
\end{gathered}
$$

$$
\begin{aligned}
& \delta=l_{1}+\theta \\
& \theta=\delta-l_{1}
\end{aligned}
$$

distance

- Eliminating RHS: multiply
- Eliminating LHS:
sub tract
4 SCARA manipulator example
Break down the the inverse kinematics for the SCARA manipulator in Fig. 4 into simpler PK subproblems.

Figure 4: SCARA manipulator.

$$
e^{\hat{\xi}_{1} \theta_{1}} e^{\hat{\xi}_{2} \theta_{2}} e^{\hat{\xi}_{3} \theta_{3}} e^{\hat{\xi}_{4} \theta_{4}} g_{s t}(0)=g_{d}
$$

Step 1: Solve for θ_{4}
$-\xi_{4}$ is the only joint that causes movement in z-direction

- We know our final z position

$$
\begin{aligned}
& g_{d}=\left[\begin{array}{ll}
R & t \\
0 & 1
\end{array}\right] \\
& z_{f}=t_{z}
\end{aligned}
$$

- Know initial $z=l_{0}$

$$
\begin{aligned}
\theta_{4} & =z_{f}-z_{i} \\
& =t_{z}-l_{0}
\end{aligned}
$$

\checkmark Solved for θ_{4}

Step 2: Solve for θ_{2}

$$
e^{\hat{\hat{k}}_{1} \theta_{1}} e^{\hat{\xi}_{2} \theta_{2}} e^{\hat{j}_{3} \theta_{3}}=g_{d} \bar{g}_{5 t}^{-1}(0) e^{-\hat{j}_{4} \theta_{4}}=: g_{1}
$$

$$
\begin{aligned}
& e^{\hat{z}_{1} \theta_{1}} e^{\hat{z}_{2} \theta_{2}} e^{\hat{z}_{3} \theta_{3}} \\
& e^{\hat{k}_{1} \theta_{1}} e^{\hat{k}_{2} \theta_{2}} \underbrace{e_{3} q_{3} \theta_{3}}_{q_{3} \text { is on } \xi_{3}}=q_{1} q_{3} \\
& e^{\hat{z}_{1} \theta_{1}} e^{\hat{\varepsilon}_{2} \theta_{2}} \cdot q_{3}=g_{1} q_{3} \\
& \begin{aligned}
q_{1} \text { on }\left[\begin{array}{l}
e^{\hat{\xi}_{1} \theta_{1}} e^{\hat{i}_{2} \theta_{2}} \cdot q_{3}-q_{1}
\end{array} \operatorname{lig}_{1} q_{3}-q_{1}\right. \\
e^{\hat{\xi}_{1} \theta_{1}}\left(e^{\hat{\varepsilon}_{2} \theta_{2}} q_{3}-q_{1}\right)=g_{1} q_{3}-q_{1}
\end{aligned} \\
& \text { Magnitude }\left[\rightarrow\left\|e^{\frac{q_{1}}{\theta_{1}}}\left(e^{\frac{\tau_{2}}{2} \theta_{2}} q_{3}-q_{1}\right)\right\|=\left\|g_{1} q_{3}-q_{1}\right\|\right.
\end{aligned}
$$

Rigid transtont $\left[\left\|e^{\hat{y}_{2} \theta_{2}} q_{3}-q_{1}\right\|=\left\|g_{1} q_{3}-q_{1}\right\|\right.$
\rightarrow Solve $\theta_{2} \quad \omega / S P 3$

Step 3: Solve for θ_{1}

$$
e^{\hat{\xi}_{1} \theta_{1}} e^{\hat{\varepsilon}_{2} \theta_{2}} \underbrace{e^{\hat{\varepsilon}_{3} \theta_{3}} \cdot q_{3}}=g_{1} \cdot q_{3}
$$

$$
e^{\hat{k}_{1} \theta_{1}}\left(\begin{array}{ll}
e^{\hat{\xi}_{2} \theta_{2}} & q_{3}
\end{array}\right)=g_{1} q_{3}
$$

Know this value! we know θ_{2}
\rightarrow Solve for $\theta_{1} w / \operatorname{SP} \mid$

Step 4: Solve θ_{3}

$$
\begin{gathered}
e^{\hat{\xi}_{3} \theta_{3}}=e^{-\hat{\xi}_{2} \theta_{2}} e^{-\hat{\xi}_{1} \theta_{1}} g_{d} g_{s t}^{(0)} e^{-\hat{\xi}_{4} \theta_{4}} \\
=g_{2}
\end{gathered}
$$

Apply this to any pt. not on ξ_{3}

$$
\begin{gathered}
e^{{\hat{v_{3}}}^{\theta_{3}}} \cdot q_{2}=g_{2} \cdot q_{2} \\
\rightarrow \theta_{3} w \mid \operatorname{sp}
\end{gathered}
$$

Max \# of sols: $1 \times 2 \times \mid \times 1=2$

5 Elbow manipulator example

Break down the inverse kinematics for the elbow manipulator in Fig. 5 into simpler PK subproblems. Find the reachable and dexterous workspaces.

Figure 5: Elbow manipulator.

