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Rigid body transformations preserve orientation and direction

They're affine transformations (Rx + p), rotation then translation

e Points can translate, but vectors simply rotate (since they only represent
direction)

¢ Homogeneous coordinates can help us represent this movement
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e Now we can represent rigid transformations for both points and vectors
using a single matrix (convert from affine form to linear form)
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e Can stack and invert
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e |f we want to parametrize our motion by time, then we can use
exponential coordinates to generate our transformation matrices
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e Create rotation matrix:
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e Can also create homogeneous transformation matrix
e Use the twist (both linear and angular velocity)
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© Pure rotation (revolute joint)
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o Rotation and translation (screw)
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Discussion 2: Exponential Coordinates

Tarun Amarnath

1. Rigid Body Transformations

¢ Length-Preserving
o All points stay the same distance from each other
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¢ Orientation-Preserving
°© Points don’t switch positions
© Same angle relative to each other
o If your camera is on the top of your phone, it stays on the top
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* In other words, a rigid body stays rigid. It's a solid solid.
e Rotations, translations, and both are rigid body transformations
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Figure 1: A rigid body transformation.



Rigid Transformation of a Point

¢ \We can move and rotate a coordinate frame
¢ Points on that frame move and rotate with it

Exercise: Write out the equation for an affine rigid body transformation of a point. Apply this to a

robot arm that has rotated m radians about the y-axis and translated 1 unit in the y-direction. Find the

new location of a sensor originally located at [2,2,2]T.
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Rigid Transformation of a Vector
e \ectors only have direction, no positional information

Exercise: How can we modify the rigid body transformation to apply to vectors?
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Homogeneous Coordinates

¢ Can be used with both points and vectors
© 4-dimensional array
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Homogeneous Transformation Matrices

e Combine rotation and translation - homogeneous transformation matrices
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e Ex. Flip about y-axis and move 1 unit in y-direction (same as above)
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Composition Rule ¢

e Product of 2 rigid body transforms performs both of them
e Go from right to left
e Same as rotation matrices basically, but this also includes translation
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Invertibility

e They're invertible

e Can go from one place to another and back
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2. Exponential Coordinates

Matrix Exponential
¢ Recall from homework 0 some definitions
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¢ \We want to construct a transformation matrix

L
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e Understand how some point moves with coordinate axes
o Ex. Where in the world frame does some point on a robot arm end up
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e But the thing with robots is that they have continuous motion
e A joint can spin around or move forward and back

Our transformation matrix changes with movement
¢ This means we need the matrix to be a function of theta (how much the
arm has moved)

How do we do that?
We look at how the joint moves (i.e. linear and angular velocities)
e Then integrate!

© (But this is a DE as we'll see, so it's really an exponential)



Exponential Coordinates for Rotation

e Basically, we're constructing the rotation matrix using this technique
e (We'll get to the full homogeneous matrix next)

Problem 1. Find the rotation matriz R(w,0) for a rotation about some axis w by amount 6. How is
Rodrigues’ formula related?
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Exercise: Find the exponential coordinates (w,0) of the rotation matriz R,(%).
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Figure 2: Rotations can happen about any arbitrary axis w. In this figure the w axis appears to be
coincident with the z-axis, but it can actually be any general vector!



3. Exponential Coordinates for All Rigid Motion

Usually we want to find more than just the rotation matrix
e See how position changes too
e We want the full homogeneous transformation

¢ We can use twists to capture this idea
© Use both linear and angular velocities

Exercise: Write the expressions for the velocity of the point p (ie. p(t)) when attached to the revolute
joint and attached to the prismatic joint in Fig. 3. Assume that w € R3, ||w|| = 1, and q¢ € R3 is some
point along the axis of w.
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Figure 2: a) A revolute joint and b) a prismatic joint.

Twist of a Revolute Joint (Rotational Motion)

* Now, let’s make the velocity into a DE in homogeneous coordinates
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Twist of a Prismatic Joint (Linear Motion)
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More on Twists
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Exercise: Find the twist coordinates for a revolute and prismatic joint.
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3.4 Solution to differential equation gives us the exponential map

Problem 5. Write the general solution to the differential equation p = gﬁ. Then, make use of the fact
that ||w|| = 1 to reparameterize t to be 6. Specifically, find the expression for p(6) in terms of p(0).
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* It's a mapping of points from initial coordinates to final coordinates after
motion with parameter
e Not a mapping between coordinate frames
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Screw Motion o (haslest TR
e Any rigid body translation can be simplified
* Instead of having a rotation and then a translation
¢ Finite rotation about some axis and then translation about that axis
o Axis |
© Magnitude M (like theta)

o Pitch h = ratio of translation : rotation
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e Rotation by M (theta)

The transformation g corresponding to S has the following effect on a point p:
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4 Finding Exponential Coordinates

Figure (4) shows a cube undergoing two different rigid body transformations from frame {1} to frame
{2}. In both cases, find a set of exponential coordinates for the rigid body transform that maps the
cube from its initial to its final configuration, as viewed from frame {0}. Do this by first finding the
equivalent screw motion.
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(a) A first screw motion. (b) A second screw motion.

A cube undergoing two screw motions.
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Equivalent Interpretations of Rotation Matrices

R4 p is composed of 3 unit column vectors that represent the B frame in terms of the A frame
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R4 p applied on some point ¢ in the B frame will tell us what that point would be in the A
frame: gaA = RABqB
1A

1@

""""’.\ <
L ZA CVR ZC”
(

(
7 |

L/

A

If we originally had some point in the standard coordinate frame and then we rotated it, we
can find the new location of that point using the rotation matrix: ¢ = Rapq
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