Worksheet on website: tinyurl.com/106a-fa23 (sorry | don’t have paper rn will bring next time)

Y
1. Reference Frames .
* We use coordinate systems to describe locations in the world ’ J
X
o (Assume these are orthonormal)

e It's useful to have multiple coordinate systems depending on what we're looking at
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® We can describe the location of a point in each coordinate frame
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Figure 1: Two coordinate frames A and B

Problem 1. Write the representation of point g with respect to the coordinate frames A and B, which
we denote q, and qp respectively.
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2. Rotation Matrices
¢ When we talk about robot arms, we talk about them both rotating and translating (moving) through
space

e Today, we're going to focus on the rotation part
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® Rotation matrix is the new axes in terms of the original axes
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Problem 2. Find the rotation matric Ra, = [ab  Yab] for an arbitrary 2D rotation (as depicted in
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In general in 3D, we have three elemental rotation matrices that arise from rotations either about the

T, Y, Or z-axis.
1 0 0 cosd 0 sinf
i Ry(9) = 0 1 0

0 cos® —sinb
0 sinf cosb

Problem 3. Work out what R.(6) is.

R, (0) =

—sinf 0 cos6
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3. Uses of Rotation Matrices
¢ Rotation matrices are unique
* They are also invertible
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Problem 4. Find the rotation matrix

@ given the same 2D coordinate frames in Fig. 1. What do
you notice about the relationship between R, and Rypz* A R {m‘,\,esm.(.ed M e
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* Changing reference frames
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o Let's go back to our robot arm example
© Let's say we have a sensor at some point on the gripper

> We know the coordinate of the sensor with respect to the gripper when the arm was at the

origin
© Now, we rotate the gripper
> We know the rotation matrix

> We still know the location of the sensor with respect to the gripper (hasn’t changed)
> But what's the coordinate with respect to the origin?
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Problem 5. Given a point ¢ = (z,y), what are its new coordinates ¢' = (z',y') after a rotation by a
general O counter-clockwise about the origin?
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4 Properties of rotation matrices
-1

-1
1. Columns of R are mutually orthonormal, ie. RRT = RTR=1 _5 RR = R. R = L
T _ -1
2. det(R) = +1 (right-handed coordinate frames) R =
Problem 6. State whether the followinq matrix is a valid rotation: =3
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5. Other rotations
e Extrinsic rotations
o Also called RPY (roll, pitch, yaw rotations)

o Determine which axis to use to rotate based on the fixed coordinate axes (world frame)
® |ntrinsic rotations

© Also called Euler angles
o Determine which axis to use to rotate based on the current coordinate axes
e Reverse of one another!
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Quaternions

e Instead of using rotation matrices or Euler angles, use a 4D vector
e Easier representation + avoids singularities (possible with Euler angles)

cosa ( sina 1 0 0 cosy —siny 0 cos(fa—~) sin(fa—7v) 0
0 1 0 00 —1 simy cosy 0| = 0 0 —1
—sina 0 cosa|l |0 1 O 0 0 1 —sin(fa —7v) cos(fa—7v) 0

6. Rodrigues’ Formula
® Rotate about non-standard axis
® Choose w, theta and apply formula to get rotation matrix

6 Rodrigues’ formula

What if we don’t want to use the elemental rotation matrices R, R,, R.7 To express a general rotation
about some axis w with ||w|| = 1 by some angle 0, we utilize Rodrigues’ formula to extract the resulting
rotation matrix:

R =1 + wsinf + &*(1 — cosh)

where the “operator transforms a vector into its skew symmetric matrix as such:

w1 0 —Ww3 w2
w= |wa|; w=] ws 0 —w1 | ;
w3 —Ww2 w1 0




EE106A Discussion 1: Rotations

1 Frame-specific representations

Points and vectors are described by coordinates that are only meaningful with respect to a correspond-
ing coordinate frame.

Figure 1: Two coordinate frames A and B

Problem 1. Write the representation of point q with respect to the coordinate frames A and B, which
we denote q, and qp respectively.

2 Rotation matrices

Let’s first think solely about the mathematical definition of a rotation matrix before discussing how
they are used in practice. A rotation matrix is a matrix that is defined according to two coordinate
frames.

Definition 1. Say we have coordinate frame A, defined by its principal axes {Zq, Ya, Za}, and frame
B, with principal axes {xp, yp, 2p}. Then, we define a rotation matrix R to be

Raop = [Tab Yab Zab)

where {Tab, Yab, Zap} are orthonormal principal axes of frame B expressed in the coordinates of frame

A.



Problem 2. Find the rotation matrix Rqp, = [Tab  Yab) for an arbitrary 2D rotation (as depicted in
Fig. 1)

In general in 3D, we have three elemental rotation matrices that arise from rotations either about the
Z, Y, Or Z-axis.

1 0 0 cos® 0 sind
R,(0)= |0 cosd —sinf|; Ry(0) = 0 1 0
0 sinf cosb —sinf 0 cosb

Problem 3. Work out what R,(0) is.

3 Uses of rotation matrices

3.1 Representing the orientation of a frame

This follows from the definition of a rotation matrix above. For any pair of coordinate frames A and
B, there exists one unique rotation matrix R,,— thus, R, tells us exactly how frame B is oriented
from the reference of frame A.

Problem 4. Find the rotation matriz Ry, given the same 2D coordinate frames in Fig. 1. What do
you notice about the relationship between Rqp, and Rpq ¢



3.2 Commutative rule

Say we now have three frames A, B, and C. I tell you what Ry, is, (ie. the orientation of C' from the
reference of B), and you’ve already calculated Rap. How can we express R, that is, the orientation
of C from the reference of A7 We simply combine rotation matrices to form a new rotation matrix
through matrix multiplication:

Rac = RabRbc

3.3 Changing the reference frame

Rotation matrices can also be used to represent motion.

Say we have a sensor on a robot arm at point g, which starts in the world origin frame A. The robot
arm then rotates and ends up at a transformed frame B. The sensor is now still at coordinate ¢ with
respect to frame B, but we no longer know where it is with respect to the world frame. If we know
the rotation matrix R4p, how can we find where the point is with respect to the world frame?

ga = Rapgs

Problem 5. Given a point ¢ = (x,y), what are its new coordinates ¢ = (', y’) after a rotation by a
general 0 counter-clockwise about the origin?

4 Properties of rotation matrices

1. Columns of R are mutually orthonormal, ie. RRT = RTR =1

2. det(R) = +1 (right-handed coordinate frames)

Problem 6. State whether the following matriz is a valid rotation:
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5 Other representations of rotations

5.1 RPY angles

Rotations are described by three angles (roll ¢, pitch 6, yaw 1) about the basis vectors of a fixed
coordinate frame (say, the world frame). It involves the following intermediate rotations of a body
frame B about a fixed world frame A, where B and A are initially coincident:

e Rotate A about its z-axis of A by the roll angle ¢. Call this new frame B.
e Rotate B about the y-axis of A by the pitch angle 6. Call this updated frame C.

e Rotate C' about the z-axis of A by the yaw angle ¢. Call this new and final frame D.

R%XI (North)

Y, (East)

Pitch (6)

Thus, by the composition of these transformations, the final resultant rotation matrix is

Rad = Rz (¢)Ry (Q)RI (¢)

This is an example of extrinsic rotations— ones that are all defined with respect to a fixed frame.
Note that these are written right-to-left; that means the rightmost RPY operation is performed first,
and the leftmost is performed last.

5.2 Euler angles

Euler angles describe the rotations about the changing basis vectors. For example, these are the
rotations involved in what we call the ZY X Euler angles, here denoted as (a, 8,7). Let frame A be
the initial orientation of the object being rotated.

e Rotate A by a about the z-axis. Call this new frame B.
e Rotate B by its new y-axis by . Call this new frame C'
e Rotate C by its new z-axis by . Call this new and final frame D.
The final resultant rotation matrix is derived from the composition of these rotations.

Roqg = RopRpcReqg = R, (O‘)Ry (B)R:c (’7)

This is an example of an intrinsic rotation — one that is defined with respect to the rotating coordinate
frame. Note that these are written left-to-right; the leftmost is performed first.

5.3 Relationship between intrinsic and extrinsic rotations

It turns out that extrinsic rotation is equivalent to an intrinsic rotation by the same angles but with
inverted order of elemental rotations, and vice-versa. Thus, a RPY transformation with roll, pitch,
and yaw (XYZ) angles of (a,b,c) is equivalent to the (ZYX) Euler angle rotations of (¢, b, a).



5.4 Quaternions

”Quaternions came from Hamilton after his really good work had been done; and, though beautifully
ingenious, have been an unmixed evil to those who have touched them in any way...” — W. Thompson,
Lord Kelvin. (1892).

The mathematics of quaternions is outside the scope of this course. However, unit quaternions are
very useful for encoding 3D rotations, and you’ll be seeing them a lot in lab. A unit quaternion @ is
a vector with four components: z, y, z, and w, such that |@| = 1. (Different software may represent
quaternions as WXYZ or XYZW; watch out for that!) You can find these terms from an axis angle
representation as follows:

—eos (0 wmwsin(?) y=wsin( ) 2= wesin(?
w = COS 2 T = Wi sSin B) Y = Wy SIn B Z = W3 sin B

where w is a unit vector along the axis of rotation, and 6 is the angle of rotation.

Benefits over Euler angles

e Represent SO(3) without singularities
Benefit over Rotation Matrices

e Only requires four values, rather than 9.

e Quaternion multiplication is much faster than matrix multiplication.

6 Rodrigues’ formula

What if we don’t want to use the elemental rotation matrices R, Ry, R,? To express a general rotation
about some axis w with ||w|| = 1 by some angle 6, we utilize Rodrigues’ formula to extract the resulting
rotation matrix:

R =TI+ @sind + &*(1 — cosh)

where the “operator transforms a vector into its skew symmetric matrix as such:

w1 0 —Wws3 Wy
w=|wa|; w=| ws 0 —w1 | ;
w3 —W?2 w1 0



