
EE106A Discussion 10: Control

1 Intro to control of linear systems

Now that we’ve learned how to represent the dynamics of systems we can construct controllers to make
these systems follow joint angle trajectories. We start with linear time-invariant systems, which are
the easiest to analyze and control. For these systems, the dynamics have the form

˙x(t) = f(x) + g(x, u) = Ax(t) +Bu(t) (1)

Before introducing a controller, let’s check the behavior of the system ẋ = Ax. As we’ve seen previously,
the solution to this ODE is x(t) = x(0)eAt. It’s possible to prove that if all of the eigenvalues of A are
strictly negative (i.e., their real parts are < 0), then x(t) ! 0 as t ! 1 for any initial condition x(0).
This property is called “global asymptotic stability.” If that’s what we want, then there’s no need to
apply a control input, we can just leave the system alone!

Problem 1: We define the equilibrium point of a dynamical system to be a point xe such that ˙x(t) = 0.
What are the equilibrium points of equation 1 if u = 0 and the system is asymptotically stable?

1.1 Controllability

If the system in equation 1 is not stable, or if we want to force it to follow a particular trajectory
that isn’t simply staying at an equilibrium point, we can use the control input u to change how the
dynamics behave. The first question we might ask is whether it’s possible to choose control inputs to
make a particular system achieve the trajectory we want. It turns out that for LTI systems, there’s a
simple test we can use that’s based on the “controllability matrix” Q:

Q =
⇥
B AB ... An�1B

⇤
2 Rn⇥nn (2)

If and only if rank(Q) is equal to n, the system is “completely controllable,” and we can choose a u to
achieve any trajectory!

1

u= 0 = X = Ax

o(A) must have strictly negative real parts
=> det(A) + 0 E) A has a trivial nullspace

=> X=0 is the only equilibrium point
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Problem 2: What kind of B matrix will make any LTI system completely controllable? What would
the corresponding control inputs look like in the dynamics?

1.2 Linear state feedback

So we have a controllable system - great, how do we choose the actual control inputs? First, let’s
define the error e(t) = xd(t) � x(t) for some desired trajectory xd(t). Plugging this into our system,
we get

�ė = ẋ� ẋd

= Ax+Bu� ẋd

= A(xd � e) +Bu� ẋd

= A(�e) +Bu+ (Axd � ẋd)

We can see that these “error dynamics” are similar to a regular linear system, but with an extra a�ne
term that depends on the desired trajectory. The simplest case is when we want the system to stay
at an equilibrium point - the a�ne term disappears (check!). We want to choose u so that the error e
goes to 0. If we choose a linear state feedback policy u(t) = Kpe(t), we can see that the error dynamics
become

�ė = A(�e) +B(Kpe) + (Axd � ẋd)

= (A�BKp)(�e) + (Axd � ẋd)

If the a�ne term is 0, we can choose the Kp so that the eigenvalues of A�BKp are strictly negative,
which as we saw above will force the error to go 0 asymptotically! If the system is completely con-
trollable, it’s guaranteed that we can find a Kp that satisfies this. Because the control we’re providing
here is proportional to the current error e(t), this is called a proportional or P controller.

Problem 3: Let’s say you want to force the system to rest at a point xd which is not an equilibrium
point. Will the state error converge to 0?
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2 Linearization

Most interesting dynamical systems are unfortunately not linear, which makes analysis and control
much more di�cult. Fortunately, we can often obtain a good linear approximation of nonlinear systems
in practice. Since the linearized system is only an approximation of the true nonlinear dynamics, we
lose most of our nice stability and tracking guarantees, but it’s still extremely helpful for understanding
and controlling the system.

Problem 4: You’ve found that the equations of motion for a 2-joint robot are given by ⌥ = M(✓)✓̈,

where the manipulator inertia matrix M(✓) is given by M(✓) =


m✓21 0
0 m✓22

�
. You decide to provide

torque control to both joints, and there are no other external forces. What is the linearized system?

3 PID Control

We can often do better than P control by adding additional terms to our feedback policy. The full
PID controller has the form

u(t) = Kpe(t) +Ki

Z t

0
e(⌧)d⌧ +Kdė(t) (3)

Where the state error is defined as e(t) = xd(t) � x(t) and the velocity error is defined as ė(t) =
ẋd(t) � ẋ(t). These error terms encode how far away the system state is from the desired trajectory
at any given time. Kp, Ki, and Kd are called your control gains and are each n⇥ n diagonal matrices
of weights. By varying these gains, you can change how the controller responds to the various error
terms. This is called tuning the controller.
Note that while we developed the P controller in the context of linear system theory, where we can
use the dynamics model to calculate a Kp that guarantees trajectory tracking, both the P and the
PID controller can actually be used with any dynamical system. In the following sections we’ll go into
more detail about the terms we’ve added to equation 3.

3.1 The Derivative Term

The derivative term is the stabilizing term in a PID controller. Essentially what the D term does is add
a damper (with viscosity Kd) between the state and its desired trajectory. A damper you see almost
every day are the one-way dampers mounted to the tops of doors which stop them from closing too
fast. Remember that the dynamics of a damper are F = �bẋ, so the damper exerts higher force the
faster the state is changing. Similarly the derivative term in a PID controller will exert more control
input the faster the error changes (in the direction opposite the change).
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The derivative term provides stabilization, decreasing oscillation and overshoot, but will also slow
down the system response.

3.1.1 Implementation Pitfalls: Noise

The derivative term has a major implementation-related pitfall. Often, a system’s sensors will only
measure the position of the system x, not its velocity ẋ. This means that in order to estimate ẋ you
need to approximate the derivative ẋ(t) ⇡ x(t)�x(t��t)

�t . If you’ve taken EECS 16B, you’ll recognize
this di↵erence equation as a high-pass filter. A high-pass filter amplifies high frequency components of
an input signal; the faster the input changes the higher the output will be.
The problem emerges when you consider sensor noise. Sensor noise tends to be rather low in magnitude,
but high in frequency. A common frequency for noise is 60 Hz (the frequency of AC current in the US),
but the resonant frequencies of any RLC circuits or mechanical components you’re using are also quite
common. A derivative term will naturally amplify any sensor noise and potentially cause instability
in your controller. Thus, you generally want to apply a low-pass filter such as a moving average on
your error derivative before feeding it into your derivative term. For example, the PID controller in
lab averages the past three measurments of ė before feeding it into the controller. The low pass filter
will attenuate the high frequency signals such as sensor noise and give you a cleaner control signal.

3.2 The Integral Term

The integral term doesn’t have as clear an e↵ect as the proportional and derivative terms, nor does it
have a neat physical analog. In order to appreciate the e↵ect of the integral term, we need to consider
the e↵ect of disturbance forces on the system.
When there are constant disturbance or drift forces, it’s impossible for a PD controller to settle at
x(t ! 1) = xd(t ! 1). This is where the integral term is useful. By adding up error over time, the
integrator can chip away at this constant disturbance and cause the state to converge to the desired
trajectory. However, in doing so integral controllers tend to decrease system stability (even proving
stability for a system with integrators becomes much harder). If tuned improperly, they can easily
cause significant oscillation.

3.2.1 Implementation Pitfalls: Windup

Integral control also has a major implementation pitfall, which is called windup. Imagine that you’re
controlling the same mass-rail system as before, but now you have actuation constraints. Real-world
actuators usually can’t produce arbitrary torques or velocities at any given time. There are often
constraints on the maximum velocity, acceleration, and jerk of a given actuator. If you start with a
very high error, your proportional term will likely saturate your actuators, and you’ll end up taking
a longer time to reach the goal state. During this time, the integral term will keep increasing, even
though this increase won’t change u. When it finally hits the goal state the integral term will be very
large, and the system will overshoot until the integral winds down again. Then on the way back the
integrator will wind up again, this time in the opposite direction, and you’ll get overshoot again. If
the wind up gets bad enough, the integrator can easily destabilize the system, overshooting the goal
more and more each time.

Problem 5: Brainstorm some potential anti-windup methods. What are their drawbacks?
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4 Other control strategies

4.1 Feedforward Control

Imagine that we have a second order (force-controlled) system that we want to move from point A to B.
We can generate a trajectory xd(t) that will navigate the system from A to B. Since this is a function
of time, we can take the derivative to find ẋd(t) and do so again to find ẍd(t) (we could also use Euler
di↵erentiation to approximate the derivative of a set of waypoints). If we have a good estimate of the
system’s inertia M(x), we can plug in the trajectory to find M(t), then find Fd(t) = M(t)ẍd(t). Now
we have an estimate of the input force required at every time step, assuming that we start where the
plan starts, and no disturbances occur. We can incorporate this information into our PID control law
by adding a feedforward term

u(t) = uff(t)Kpe(t) +Ki

Z t

0
e(⌧)d⌧ +Kdė(t)

In this example uff(t) = Fd(t). Feedforward control doesn’t oscillate and can’t cause instability
(assuming that the system itself is stable). Because of this, we want the feedforward term to do a
majority of the control work, and use our feedback terms for small corrections. A good feedforward
term will drastically improve performance and require significantly less tuning, with essentially no
downsides.

4.2 Feedback Linearization

Sometimes, we can do better than plain feedforward control when we’re dealing with highly nonlinear
systems, like robot manipulators. If you look at a general control-a�ne (the dynamics have an a�ne
dependence on the control) nonlinear system

ẋ = f(x) + g(x)u

you have two nonlinear terms. The drift vector f(x) incorporates all the internal forces in the system
(coriolis and gravitational forces for example) while the control vectors g(x) determine how your control
inputs a↵ects your dynamics. If we can figure out a set of inverse dynamics

u = a(x) + b(x)ẋd = �g�1(x)f(x) + g�1(x)ẋd

we can use this as our controller and exactly cancel out the nonlinearities of our system to get

ẋ = ẋd

It’s not always possible to invert the dynamics like this (if you want to figure out if it’s possible, you’ll
need to take a graduate nonlinear controls class), but it so happens that the dynamics of any open-
chain robot manipulator are invertible. You’ll examine the feedback linearization of these systems in
your homework, and should you choose to take EECS C106B, you’ll be implementing it on hardware.
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