
EECS/MechE/BioE C106A:
Midterm 2 Review Session
The return of Prof. Tarun Amarnath!

Look at Sunayʼs brilliant smile

 



All the Past Content…



Rigid Body Transformations
● Length and orientation preserving
● Represent a movement or a change in coordinate frame
● Rotations, translations, or both (screw motion)

g



Homogeneous Transformation Matrices
● Compact representation
● Both rotation and translation included
● Can stack and invert



Exponential Coordinates 
● Goal: Create rotation and homogeneous transformation 

matrices as a function of time
● Comes from solving a differential equation
● We only need information about how the object moves 

(time is a parameter thatʼs plugged in) Twists
Axis of rotation

get e't r e Et



Forward Kinematics
● Goal: Find the location of the tool after a multi-joint robot 

arm has moved around
● Compose exp. coords

9,10 tn É É gs o



Inverse Kinematics
● How do we move our robotʼs joints to reach a desired 

configuration?
● Use Paden-Kahan subproblems along with tricks (reduce 

problem down to simpler parts)

Given some
final

positiongse
t

Find 0



Computer Vision



Pinhole Camera Model

E



Two-View Geometry

x E x o

Ty

point tonation

it Zords

FR

Can determine depth info



Convolutions
● Slide a kernel over some image 
● Understand some information about the picture



Homography
● Apply some kind of affine transformation to an image
● Change perspectives - for example, can straighten a picture
● Need at least 4 pairs of points to do this



Velocities



What do we mean by them?
● Velocity in general is the rate of change with respect to 

some reference frame
● With robots, use a stationary frame
● Calculate the velocity of some point attached to the end 

effector wrt to the base



Some Important Considerations
● Spatial & body velocities - just a coordinate shift, tells us 

which coordinate system to use

● Spatial and body velocities are twists
● Generic expressions for any point 
● Can apply them to a specific point to determine that pointʼs 

velocity

us

ve T Pa



Spatial Velocity
● Express our point in the spatial frame

qact gas EsÉ
gain gas 9

switch
frames

via Eggs



Body Velocity
● Point is expressed in terms of the body frame

vault
gas 14 gas it q

we



Interpreting Velocities as Twists
● Can break them apart into v and w components
● Calculate each one separately



Review Example 

1
vs if

using
velocities

instead non
o
o

E

p.gg in body

É
iii

frame



Adjoints



What are they?
● Like a g matrix for twists!
● Change coordinate frames if we have a twist
● Because velocities are also twists, we can use adjoints to 

switch between spatial and body velocities

Vas Adgas
Val



Formulas

Adg Adgbe

Ad
gas9be



Jacobians and Singularities



Motivation
● We want to get the velocity of our end effector
● However, our sensors give us the velocities of our links
● Jacobian allows us to go from link velocities → end 

effector velocity



Spatial Jacobian
● Gets us to the spatial velocity
● Columns of the Jacobian:

○ Twists of each of the links of the robot
○ In their current positions (i.e. not at 0 position, unlike FK)
○ Expressed in spatial coordinates

● Column represents derivative of end effector position wrt 
each of the links



Formulas

Partial
derivatives
Twists



Body Jacobian
● Analogous to spatial Jacobian
● Gets us the body velocity, instead of the spatial velocity
● Each of the twists are represented in the body frame 

instead



Conversion 
● Jacobians are composed of twists
● Can use the adjoint to move between them!

○ Adjoint is invertible, can go the other way as well



Finding the Jacobian

● Can find the twists making up the columns directly by 
finding and applying adjoint transformation 

● Alternatively, we can calculate the new positions of each of 
the v and w components that make up the twists



Singularities
● Jacobian drops in rank
● We canʼt reach all of the velocities that we should be able to 

no matter what we set each of our link velocities to
● This is a singular configuration
● Would prefer to avoid being in it or near it

○ Canʼt achieve instantaneous motion in certain directions
○ Could require significant amounts of force in certain directions 

around that area



Dynamics



Forces!
● In real life, weʼre trying to control our robot by applying 

some force to its joints
● Need to get the dynamics of our system 
● The forces in each direction so that we know exactly what 

to apply to achieve our trajectory



Use Energy!
● Forces can be difficult

○ When there are multiple reference frames, particularly rotating 
ones, in play

○ End up with many complicated terms
○ Sometimes have several “imaginary” forces to balance equationsʼ

● Energy is nice!
○ Scalars
○ Only depends on current state of the object 
○ Invariant to coordinate frame - choose any one



Method
1. Choose state
2. Kinetic energy
3. Potential energy
4. Lagrangian
5. Equations of motion (convert to forces)
6. Separate into matrices

q



State
● Depends on the problem at hand
● Choose minimal representation needed or the 

representation that makes it easiest to determine what 
forces to apply

● Usually p, theta, or something similar



Kinetic Energy

● Translational 

● Rotational

GDtwist

I m V2
g

g g g

t
t

m f jo

in É



Potential Energy
● Gravitational

● Spring

SIght from our o position

I Kx



Lagrangian
No

matrices
or
vectors

scalar



Equations of Motion

MIpwithvectors

s vector w the same dimension as state

Ant of force applied on each

state variable



Separation 

m

Convict
Imaginary forces from

spinning referents framesMass inertia



Control



Trajectories
● Define how we want our robot to move
● Precomputed 

gig



Realistic Motion
● Apply some control input (u) to follow trajectory

○ Feedforward control
● Friction, inefficiencies, and other real world issues create 

problems
● Adjust input to fix errors

○ Feedback



Systems
● Equations used to represent relationships between state 

variables
● Also incorporate control input
● Generated with knowledge of dynamics

I f x t g x u



PID Control
● Used to error correct and can follow trajectory to some 

small extent
● Model-free control - only need to know error, not system 

equations

Eti meh



The Terms
● Proportional

○ Workhorse
○ Applies input that pulls state towards desired trajectory

● Derivative
○ Dampens proportional response
○ Prevents oscillation and overcorrection
○ Allows for convergence

● Integral
○ Corrects steady-state error because of constant forces like g

Supplies force to stay at o error



Model-Based Control
● Uses system dynamics
● Much better inputs to control state

○ PIDs might estimate error with position
○ But input might be acceleration - not ideal

● Feedforward control - determine beforehand what the 
input should be

Feedback

u Uff Nfb
T

y eFeedforward
correction



An Example

M É m g Kx Input

I
solve for input force
achieve id
d

add a feedback term

using PID control

mi m g ka t Finput

mid mgthx finput
aFinput t Kp e t Kai this edt



Feedback Linearization
● Setup input in such a way that we can directly plug in our 

trajectory as a control input

Feedforward control
even though it's called
feedback

I f x t g x a

u g x fix t g x id
input is a function
of desired

is id trajectory



Lab



● Make sure youʼre familiar with the basic setup operations!
● Sourcing, making, etc.
● Nodes, topics, publishers, subscribers
● Creating packages, running programs
● Types of communication protocols
● ROS parameter server
● Bashrc
● Work done in labs (planning, tracking, mapping, etc.)

Goal Prep for job interviews
work in industry

server client


