
EECS/MechE/BioE C106A:
Midterm 1 Review Session
Presented by Tarun Amarnath

Rigid Body Transformations

Rigid Body Transformations
● The forms of movement we discuss in this class
● 2 important qualities:

○ Length preserving

○ Orientation preserving

Agcp g call 11 p g

g u x w g v x g Iwl

Rotations

1st Rigid Body Transform: Rotations
● Letʼs say we have a world frame {A}
● Thereʼs a body attached to it {B} with its own orientation
● Rotation matrix represents the axes of {B} in terms of the

axes of {A}

B
ga Rab B

tis
I

b A Express point B in the A

coordinate frame
xa Tb Transform point B by R

Rotations about World Axes

Rodrigues’ Formula
● Rotation about some generic axis w (not necessarily a

world axis) by

● Skew-symmetric matrix:

R w ol EO I t in sink t in l cos a

wz w

w I woo woo
E so s

Intrinsic (Euler) vs. Extrinsic (RPY) Rotations
● Intrinsic - rotate based on axes of body frame

○ Write this out from right to left
● Extrinsic - rotate based on world axes

○ Write this out from left to right

● Equivalent, depending on how you read a composition

Example
● RPY Rotation (right to left)

○ x-axis by 90°
○ y-axis by 90°
○ z-axis by 90°

● Euler Rotation (left to right)

○ z-axis by 90°
○ New y-axis by 90°
○ New x-axis by 90°

R z th Ry H2 Rx Hz

I 51 IT

I
I

Special Orthogonal Matrices
● 3D rotation matrices fall into the SO(3) group

● Orthogonal matrices that follow the right-hand rule

Groups
● Multiplication maps into itself

● Identity operative

● Inverse

● Associativity

g i Iz E G

g ga EG

Unige EEG g e e g g
t ge G

Unique inverse gig g g e

g 92 93 g 92 53

Rotation and Translation

General Rigid Body Transformations
● Goal: express rotation and translation
● (points translate, vectors simply rotate)

● Homogeneous coordinates:

T

EI g Ex p
rotate Evanslate

if of

Homogeneous Transformation Matrices
● Compact representation
● Both rotation and translation included

● Can stack and invert

g 1 i Transform a point

Jae ga g

P

gac goat
g I

R

SE(3) is a group

g I I E SE 3

SE 3 ft P E R I p E Rs Resold

Exponential Coordinates

Exponential Coordinates
● Goal: Create rotation and homogeneous transformation

matrices as a function of time

● Comes from solving a differential equation
● We only need information about how the object moves

(time is a parameter thatʼs plugged in)

rp x I
pct pct

Exp. Coordinates for Rotation Matrices
● Axis of rotation creates a rotation matrix

R It eat

Same as Rodrigues Formula

Exp Coords w o

Exp. Coords for General Rigid Body Motion

● Pure rotation:

● Twists generate homogeneous transformation matrices

● Pure translation:

● Screw Motion:

q i gig

9 1 054 L

Exp Coords E O
w

Reference Formulas
● Rotation and Translation

● Pure Translation

5 1

More on Screw Motion
● Any rotation + translation can be expressed as a screw

about a single axis
● Axis w
● Magnitude of rotation
● Pitch h (ratio of translation : rotation)

○ h = 0: pure rotation
○ h = infinite: pure translation

É

Forward Kinematics

Multi-Link Arms
● Goal: Find the location of the tool after a multi-joint robot

arm has moved around

Composition of Twists
1. Find twists of each joint in the reference configuration

○ All joint angles are 0
○ All vectors expressed in the world frame

2. Find starting position of tool
3. Put it together in exponential coordinates

elio et gst o g 0 on

9 o o o o o i
T

92 l o o o o i

93 lil o o o o i

94 o o i o o o

gs lol I 6 12

0 I

e et gastro g 0 on

Notes
● Order matters: joints on the right cannot affect the

position of joints on the left
● Forward kinematics (calculated using the world frame) will

deliver the same result as composing homogeneous
transformation matrices (see Discussion 3, Problem 3)

Inverse Kinematics

The Goal
● How do we move our robotʼs joints to reach a desired

configuration?
● Given:

○ Where we want to go
○ Details about the robot

■ Twists
■ Starting Configuration

● Desired:

EFF

On

Padan-Kahan Subproblems
● We have proven the solutions to some basic inverse

kinematics problems
● Can we reduce our much more complicated robotics

problem down to these?

the subproblems

Subproblem 1
● Rotation about some fixed axis

○ We specify (p, q)
○ Find theta

● <= 1 solution

gop q
E I Solh

atan2wt n'xu n v

won't need to ever compute this

Subproblem 2
● Rotate about 2 intersecting axes

○ We specify (p, q)
○ Find theta

● <= 2 solutions

j O e p q
E 2 Sols

Subproblem 3
● Move to a specified distance from another point

○ Specify (p, q, delta)
○ Find theta

● <= 2 solutions H etop all p

n

I 2 solutions

iii

Extrapolating
● We know we can solve these simple IK problems to find theta
● But what about the complex robot arm?

● Solution: repeatedly apply subproblems using convenient
points

● Some tricks to help us out

É't e gs o g

Rearrange
t

eat eton gags o
g

Trick #1: Eliminate on the RHS
9

chop Pp

gift
e e p g
Pick a point p on 93

ett eÉz02p gp
Subproblem 2

Trick #2: Eliminate on the LHS Using Norms

eh I
e
202

git
q on axis of joint Iq
P not on axis of joint 2

p

Heine o
p g 1 Agp EllI

yea cetzorp g 11 Igp EllRigidBodyTransformsdon'tchange norm

Subproblem 3 He520 p ell 11 gp g't

Trick #3: Prismatic Joints

Get into form of 5 P 3

He 03
p g 8

f e t o

originaldistance

Tovement

Lab Content

ROS Overview
● Meta-operating system for a robot
● Hardware abstraction and message passing between nodes
● Things to know:

○ Computation graph
○ How the file system looks
○ Basic commands (ex. catkin_make)

Publishers and Subscribers
● One way to pass content
● Publishers post messages, subscribers read them
● Things to know:

○ ROS message definitions
○ How to view various information (rostopic __)
○ Python code

■ You wonʼt have to write your own, but fill-in-the-blank is
definitely possible

Services, Requests, and Clients
● Like synchronous function calls

○ Client requests, waits for response
○ Server fulfills request and responds
○ Client processes response

● Execute in sequence instead of parallel subscriber callbacks
● Things to know

○ General Python file structure
○ How to run Python files (rosrun pkg file)
○ Make requests from command line (rosservice call …)

ANY QUESTIONS?

Problem 7. When all else fails (15 points)

Let u 2 R3
be a unit vector, and let R = I + 2û

2
.

(a) (3 points) Show that R
T
R = I.

Hint: Recall equation (2.13) from the textbook: û
3
= �û.

(b) (3 points) Show that detR = 1, and hence conclude that R is a rotation matrix.

Hint: The function u 7! det(I + 2û
2
) is continuous, thanks to the continuity of the

determinant. However, from part (a) it follows that det(I + 2û
2
) 2 {+1,�1}. Is it

possible for a continuous function to take on exactly two discrete values? Can you

conclude from this that det(I + 2û
2
) is actually a constant, for any u?

(c) (5 points) Find the exponential coordinates for R i.e. find a unit vector ! and a scalar

✓ 2 [0, 2⇡) such that R = e
!̂✓
.

Hint: What does R look like when we switch to a new reference frame where u is the x

axis?

Hint: Recall that the determinant of a transformation is invariant under a change of

basis.

(d) (2 points) Verify that when Rodrigues’ formula is applied to your answer in the previous

part, you get the original matrix R.

(e) (2 point) What would go wrong if you tried to use Proposition 2.9 from the textbook

to compute the exponential coordinates of a rotation matrix of this form?

9

Problem 3. Turtle Wrapper Node (15 points)

In Lab 1, we asked you to write a publisher node that would send a geometry msgs/Twist
over the /turtle1/cmd vel topic in order to control your simulated turtle. You may recall

only having to set two values of the twist: the linear x velocity, and the angular z velocity.

This made sense at the time because our robot was entirely simulated in a 2D environment,

reflecting the fact that it was a unicycle modeled robot; at any time, we may model the

turtle’s velocity relative to its own reference frame as

~V =

v

!

�
.

where v is the linear x velocity and ! is the angular velocity. For a unicycle modeled robot,

we always assume that the linear y velocity is 0. By controlling the turtle through directly

manipulating a 6D Twist, you were breaking the abstraction between the perceived model of

the robot and the commands the simulator needed to receive in order to control the turtle!

To remedy this, you are now tasked with writing a ”wrapper” node: you will construct a

node that will listen for linear velocity and angular velocity commands published over a

topic of your choice, and will publish that information to /<turtle name>/cmd vel, where
<turtle name> denotes the name of the turtle you want to control. Assume that your

wrapper node has access to the desired turtle name through a command line argument.

Assume this node will be written as a .py file placed in the appropriate location of a package

named midterm 1.

(a) (3 points) What is the name of your node, what topic(s) do you want it to subscribe

to, and what topic(s) do you want it to publish to? Remember that you want to be

able to run multiple instances of your node if someone wants to use your wrapper node

for multiple turtles.

(b) (2 points) You will be designing a new message type for the topic you choose to sub-

scribe to. Define your .msg file. Make sure to indicate the name of the file somewhere.

(c) (5 points) Assume someone wants to control the turtle named ”jturtle”. A node named

user control is running that will send data of the appropriate message type to the

topic your wrapper node subscribes to. Assuming that your wrapper node, turtlesim,

and a rostopic echo node listening to the output of user control for debugging

purposes are all running. Draw the an approximate RQT graph that fits this scenario.

(d) (5 points) Time to code up your node! Fill in the appropriate blanks:

#!/ bin /env python

import rospy
import sys
from geometry msgs . msg import Twist
from import

c l a s s TurtleWrapper :

4

de f i n i t (s e l f , tur t l e name) :
rospy . Subsc r ibe r (, , receive command)
s e l f . pub = rospy . Pub l i she r (, , qu eue s i z e =10)

de f receive command (s e l f , cmd vel 2D) :
cmd vel = Twist ()
cmd vel . l i n e a r . x =
cmd vel . angular . z =
s e l f . pub . pub l i sh (cmd vel)

i f name == ’ ma in ’ :
rospy . i n i t n od e (, anonymous=True)
turt l e name = sys . argv [1]
wrapper = TurtleWrapper (turt l e name)
rospy . sp in ()

5

