Welcome to C106A/206A!

Introduction to Robotics

Professors Koushil Sreenath & Shankar Sastry Head TAs: Riddhi Bagadiaa (Lab), Sunay Poole (Content)

Presenter: Tarun Amarnath

(u)GSIs

Riddhi Bagadiaa Head TA - Lab, Admin

Sunay Poole Head TA - Content

Tarun AmarnathContent TA

Max de Sa Content TA

Emma Stephan Lab TA

Han Hoang Nguyen Lab TA

Marius Wiggert Lab TA

Reader(s) and Lab Assistants

Jewook Ryu Lab Assistant

Abanob Bostouros Lab Assistant

Zoltan Williamson Reader

Aryaman Jhunjhunwala Lab Assistant

Course Logistics

Looking at that first syllabus like

Enrollment

- Don't know how many people will drop, class will not expand
- We have no control over enrollment; speak to advisers
- If you are a grad student in 106A, you may not get credit for the course
 - Speak to your advisers

Berkeleytime

6

Prerequisites

- Knowledge of linear algebra
- Programming in **Python**
- Curiosity about how things work
- Interest in experimental work
- Willingness to explore

EE 120 is not a hard prerequisite

Course Resources

- Course website: https://ucb-ee106.github.io/eecs106a-fa22/
 - o Lectures, Webcasts, Labs, Homework, etc
- Ed: https://edstem.org/us/join/pSD4ef
 - o Communication, Questions, Homework Solutions
- Gradescope: Code 57KNVR
 - Turning in homework, midterm, project materials
- Optional Discord https://discord.gg/HW4nxtVSkN
 - Meet your classmates, organize impromptu gatherings
 - Not officially monitored! But staff may check occasionally

Please stay up to date!

- Weekly Announcements (released Sundays) are required reading
- Check if your question has been answered
- Course Policies
- Ed

Be a sponge absorbing knowledge:

Grading Breakdown

+2% extra credit available!

Homework Policy

Homework Cycle

- Released Wednesdays
- HW parties on Mondays @6-8pm + another hour later in the week
- Due Tuesdays @11:59pm
- Solutions released Fridays (3 days after due date)
- Through early November
- HW 0 (linear algebra review) will soon be released on Gradescope (due Tuesday 08/30 11:59pm)

Slip Days & HW Drop

- <u>Five (5) free slip days!</u> No penalty incurred
- Maximum of <u>two (2)</u> slip days on any one assignment
- Cannot be used on Final Project deliverables
- You can earn <u>one (1)</u> homework drop by filling out mid-semester feedback forms

Self Grades

Will be happening!

We just... don't quite have all the details hammered out yet.

Midterms

- Midterm I: Thursday, September 29th
 - o Rotations, Kinematics
- Midterm II: Tuesday, November 15
 - Jacobians, Dynamics, Controls
- Both midterms will be during class
- Form for DSP accommodations will be sent out soon
- In-class review session
- No final exam!!

Labs

- Please fill out the <u>Pre-semester scheduling jamboree!</u> By 11:59pm on
 Friday to be assigned a lab
 - Will honor lab partner requests
 - o Find lab partners via Ed or Discord!
- Ed threads & OH for additional help
- Lab Preparedness Quiz is part of Lab 2
- Labs 1 & 2 are due at the start of the next lab
- Failure to complete Lab 1 will result in being dropped

Lab Modules

Week 1: Half the section works on arms (A), half the section works on mobile robots (B)

Week 2: Switch hardware and labs

Week 3: Buffer week (full credit for both labs)

Both labs before the lab section for Lab C

Worried about lab?

- Python/NumPy/Linux bootcamp will happen this weekend/ recorded and posted!
- Time will be posted on Ed soon™

Lecture & Discussion

LECTURE

- Will test out live Ed threads for each lecture to ask questions
- Live lecture will be recorded and linked on the website
- Please step out for food/drink

DISCUSSION

- 1-hr sections dedicated to conceptual help and problem-solving
- 1 section will be remote, recorded, and linked on the website
- Please attend the online discussion on Thursday only if you are fine with being recorded
- Start today, 8/25
- We will only be able to offer 3 discussion sections
 - o 205: R 2-3pm (online & recorded)
 - o 201: F 2-3pm
 - 202: F 3-4pm

LOST Section

- Lost and Overwhelmed Students' Turnabout
- NOT a review session
- Different material from regular discussion sections
- Safe space to ask questions without judgment
- Wednesdays 5-7pm, location TBD
 - Starting next week!

Effort, Participation, and Altruism (EPA)

- Up to +2% extra credit! (equivalent to a homework drop)
- Ways to earn EPA
 - attending lecture
 - o answering questions on Ed
 - o engaging in discussion & lab mini-lecture
 - volunteering to help others when stuck

Office Hours

- Start next week!
- Schedule on website: <u>https://ucb-ee106.github.io/eecs106a-fa22/schedule/</u>
- For HW help: Sunay, Tarun, Max
- For Lab help: Riddhi, Marius, Emma, Han
- For Admin help: Riddhi
- Profs best for deep conceptual questions

Final Project

Students choose their own final projects, but they **must be approved** by course staff. Projects will be done in groups of 4-5.

- Apply multiple aspects of course material.
- Include **sensing**, **planning**, and **actuation**.
- Demonstrate good designer/experimentalist rigor:
 - What did you measure? What are your assumptions? What did your measurements tell you?
 - How did you evaluate your results? How do you account for error?
 - What lessons did you learn?
 - How does this fit into a grander scheme of things?
- Industry-sponsored projects

Final Project Timeline

- Project Ideas: September
 - We'll release a list of project ideas and hold a discussion in early October
- Mini-proposal: Early October
 - We'll review these and schedule individual meetings with each group
- Project Meetings: Mid-October
- Final Proposal and Parts List: Late October
- Project Work: After Midterm 2
- No more homework, discussions, labs
- Demos: December 8 and 9
- Final Reports: December 16

A college semester is always bananas!

- It's okay to be stressed.
- We're here to help.
- Please communicate with us.

WE'RE IN THIS TOGETHER

