Last Time

Chapter 2 Rigid Body Motion

- **2** Rotational motion in \mathbb{R}^3
 - Quaternions
- 3 Rigid Motion in \mathbb{R}^3
 - SE(3)
 - As a Configuration Space
 - Homogeneous Representation
 - SE(3) is a Group
 - SE(3) is a Rigid Body Transformation

Recap

Chapter 2 Rigid Body Motion

- **3** Rigid Motion in \mathbb{R}^3
 - Exponential coordinates of SE(3)
 - Twists
 - se(3)
 - The Exponential Map
 - Screw Motion
 - What is a Screw
 - Twist associated with a Screw
 - Screw associated with a Twist

- Forward kinematics
 - Joint Space

Exponential coordinates of SE(3):

For rotational motion:

$$\begin{aligned}
\dot{p}(t) &= \omega \times (p(t) - q) \\
\begin{bmatrix} \dot{p} \\ 0 \end{bmatrix} &= \begin{bmatrix} \hat{\omega} & -\omega \times q \\ 0 & 0 \end{bmatrix} \begin{bmatrix} p \\ 1 \end{bmatrix} \\
\text{or } \dot{\overline{p}} &= \hat{\xi} \cdot \overline{p} \Rightarrow \overline{p}(t) = e^{\hat{\xi}t} \overline{p}(0)
\end{aligned}$$

where
$$e^{\hat{\xi}t} = I + \hat{\xi}t + \frac{(\hat{\xi}t)^2}{2!} + \cdots$$

Rigid Motion

in ℝ³

Exponential coordinates of SE(3):

Chapter 2 Rigid Body Motion

Rigid Body Transformations

Rotational motion in \mathbb{R}

Rigid Motion in \mathbb{R}^3

Velocity of a Rigid Body

Wrenches and Reciprocal Screws

Reference

For rotational motion:

$$\dot{p}(t) = \omega \times (p(t) - q)$$

$$\begin{bmatrix} \dot{p} \\ 0 \end{bmatrix} = \begin{bmatrix} \hat{\omega} & -\omega \times q \\ 0 & 0 \end{bmatrix} \begin{bmatrix} p \\ 1 \end{bmatrix}$$
or
$$\dot{\overline{p}} = \hat{\xi} \cdot \overline{p} \Rightarrow \overline{p}(t) = e^{\hat{\xi}t}\overline{p}(0)$$
where
$$e^{\hat{\xi}t} = I + \hat{\xi}t + \frac{(\hat{\xi}t)^2}{2!} + \cdots$$
For translational motion:

$$\dot{p}(t) = v$$

$$\begin{bmatrix} \dot{p}(t) \\ 0 \end{bmatrix} = \begin{bmatrix} 0 & v \\ 0 & 0 \end{bmatrix} \begin{bmatrix} p \\ 1 \end{bmatrix}$$

 $\dot{\overline{p}}(t) = \hat{\xi} \cdot \overline{p}(t) \Rightarrow \overline{p}(t) = e^{\hat{\xi}t} \overline{p}(0)$

Chapter 2 Rigid Body Motion

- 3 Rigid Motion in \mathbb{R}^3
 - Exponential coordinates of SE(3)
 - Twists
 - se(3)
 - The Exponential Map
 - Screw Motion
 - What is a Screw
 - Twist associated with a Screw
 - Screw associated with a Twist

- 1 Forward kinematics
 - Joint Space

Definition:

$$se(3) = \left\{ \begin{bmatrix} \hat{\omega} & v \\ 0 & 0 \end{bmatrix} \in \mathbb{R}^{4 \times 4} \middle| v, \omega \in \mathbb{R}^3 \right\}$$

is called the twist space. There exists a 1-1 correspondence between se(3) and \mathbb{R}^6 , defined by $\wedge : \mathbb{R}^6 \mapsto se(3)$

$$\xi \coloneqq \left[\begin{array}{c} v \\ \omega \end{array} \right] \mapsto \hat{\xi} = \left[\begin{array}{cc} \hat{\omega} & v \\ 0 & 0 \end{array} \right]$$

Chapter 2 Rigid Body Motion

Transformations

Rotational motion in \mathbb{R}

Rigid Motion in \mathbb{R}^3

Velocity of a Rigid Body

Wrenches and Reciprocal Screws

Chapter 2 Rigid Body Motion

- **3** Rigid Motion in \mathbb{R}^3
 - Exponential coordinates of SE(3)
 - Twists
 - se(3)
 - The Exponential Map
 - Screw Motion
 - What is a Screw
 - Twist associated with a Screw
 - Screw associated with a Twist

- 1 Forward kinematics
 - Joint Space

Definition:

$$se(3) = \left\{ \begin{bmatrix} \hat{\omega} & v \\ 0 & 0 \end{bmatrix} \in \mathbb{R}^{4 \times 4} \middle| v, \omega \in \mathbb{R}^3 \right\}$$

is called the twist space. There exists a 1-1 correspondence between se(3) and \mathbb{R}^6 , defined by $\wedge : \mathbb{R}^6 \mapsto se(3)$

$$\xi \coloneqq \left[\begin{array}{c} v \\ \omega \end{array} \right] \mapsto \hat{\xi} = \left[\begin{array}{cc} \hat{\omega} & v \\ 0 & 0 \end{array} \right]$$

Rotational motion in \mathbb{R}^3

Rigid Motion in \mathbb{R}^3

Velocity of a Rigid Body

Wrenches and Reciprocal Screws

Referenc

Property 6: $\exp : se(3) \mapsto SE(3), \hat{\xi}\theta \mapsto e^{\xi\theta}$

Definition:

$$se(3) = \left\{ \begin{bmatrix} \hat{\omega} & v \\ 0 & 0 \end{bmatrix} \in \mathbb{R}^{4\times4} \middle| v, \omega \in \mathbb{R}^3 \right\}$$

is called the twist space. There exists a 1-1 correspondence between se(3) and \mathbb{R}^6 , defined by $\wedge : \mathbb{R}^6 \mapsto se(3)$

$$\xi \coloneqq \left[\begin{array}{c} v \\ \omega \end{array} \right] \mapsto \hat{\xi} = \left[\begin{array}{cc} \hat{\omega} & v \\ 0 & 0 \end{array} \right]$$

motion in R

Rigid Motion in \mathbb{R}^3

Velocity of a Rigid Body

Wrenches and Reciprocal Screws

Reference

Property 6: $\exp: se(3) \mapsto SE(3), \hat{\xi}\theta \mapsto e^{\hat{\xi}\theta}$

Proof:

Let
$$\hat{\xi} = \begin{bmatrix} \hat{\omega} & \nu \\ 0 & 0 \end{bmatrix}$$

■ If $\omega = 0$, then $\hat{\xi}^2 = \hat{\xi}^3 = \dots = 0$, $e^{\hat{\xi}\theta} = \begin{bmatrix} I & \nu\theta \\ 0 & 1 \end{bmatrix} \in SE(3)$

(continues next slide)

Chapter L'Rigid Body Motion

Rigid Body Transformations

Rotational motion in \mathbb{R}

Rigid Motion in \mathbb{R}^3

Velocity of a Rigid Body

Wrenches and Reciprocal Screws

Reference

If ω is not 0, assume $\|\omega\| = 1$.

Define:

$$g_0 = \left[\begin{array}{cc} I & \omega \times v \\ 0 & 1 \end{array} \right], \hat{\xi}' = g_0^{-1} \cdot \hat{\xi} \cdot g_0 = \left[\begin{array}{cc} \hat{\omega} & h\omega \\ 0 & 0 \end{array} \right]$$

where $h = \omega^T \cdot v$.

$$e^{\hat{\xi}\theta} = e^{g_0 \cdot \hat{\xi}' \cdot g_0^{-1}} = g_0 \cdot e^{\hat{\xi}'\theta} \cdot g_0^{-1}$$

and as

$$\hat{\xi}^{\prime 2} = \begin{bmatrix} \hat{\omega}^2 & 0 \\ 0 & 0 \end{bmatrix}, \hat{\xi}^{\prime 3} = \begin{bmatrix} \hat{\omega}^3 & 0 \\ 0 & 0 \end{bmatrix}$$

we have
$$e^{\hat{\xi}'\theta} = \begin{bmatrix} e^{\hat{\omega}\theta} & h\omega\theta \\ 0 & 1 \end{bmatrix} \Rightarrow e^{\hat{\xi}\theta} = \begin{bmatrix} e^{\hat{\omega}\theta} & (I - e^{\hat{\omega}\theta})\hat{\omega}\nu + \omega\omega^T\nu\theta \\ 0 & 1 \end{bmatrix}$$

Chapter Rigid Body Motion

Rigid Body Transformations

Rotational motion in \mathbb{R}^3

 $\begin{array}{c} \text{Rigid Motion} \\ \text{in } \mathbb{R}^3 \end{array}$

Velocity of a Rigid Body

Wrenches and Reciprocal Screws

Reference

$$p(\theta) = e^{\hat{\xi}\theta} \cdot p(0) \Rightarrow g_{ab}(\theta) = e^{\hat{\xi}\theta}$$

If there is offset,

$$g_{ab}(\theta) = e^{\hat{\xi}\theta}g_{ab}(0)$$
 (Why?)

Figure 2.14

Property 7: $exp : se(3) \mapsto SE(3)$ is onto.

Chapter 2 Rigid Body Motion

Rigid Body Transformations

Rotational motion in \mathbb{R}^3

Rigid Motion in \mathbb{R}^3

Velocity of a Rigid Body

Wrenches and Reciprocal Screws

Property 7: $exp : se(3) \mapsto SE(3)$ is onto.

Proof:

Let $g = (p, R), R \in SO(3), p \in \mathbb{R}^3$

Case 1: (R = I) Let

$$\hat{\xi} = \begin{bmatrix} 0 & \frac{p}{\|p\|} \\ 0 & 0 \end{bmatrix}, \theta = \|p\| \Rightarrow e^{\hat{\xi}\theta} = g = \begin{bmatrix} I & p \\ 0 & 1 \end{bmatrix}$$

Chapter 2 Rigid Bod Motion

Transformations

motion in \mathbb{R}^3

Rigid Motion in \mathbb{R}^3

Velocity of a Rigid Body

Wrenches and Reciprocal Screws

Chapter 2 Rigid Body Motion

- 3 Rigid Motion in \mathbb{R}^3
 - Exponential coordinates of SE(3)
 - Twists
 - se(3)
 - The Exponential Map
 - Screw Motion
 - What is a Screw
 - Twist associated with a Screw
 - Screw associated with a Twist

- 1 Forward kinematics
 - Joint Space

□ Screws, twists and screw motion:

Rigid Motion in \mathbb{R}^3

Screw attributes

Figure 2.15

 $h = \frac{d}{\theta}(\theta = 0, h = \infty), d = h \cdot \theta$ Pitch:

Axis: $l = \{q + \lambda \omega | \lambda \in \mathbb{R}\}$ Magnitude: $M = \theta$

□ Screws, twists and screw motion:

Chapter 2 Rigid Body Motion

Rigid Body Transformations

Rotational motion in \mathbb{R}^3

Rigid Motion in \mathbb{R}^3

Velocity of a Rigid Body

Wrenches and Reciprocal

Reference

Screw attributes

Figure 2.15

Pitch: $h = \frac{d}{\theta}(\theta = 0, h = \infty), d = h \cdot \theta$

Axis: $l = \{q + \lambda \omega | \lambda \in \mathbb{R}\}$

Magnitude: $M = \theta$

Definition:

A **screw** S consists of an axis l, pitch h, and magnitude M. A **screw motion** is a rotation by $\theta = M$ about l, followed by translation by $h\theta$, parallel to l. If $h = \infty$, then, translation about ν by $\theta = M$

Chapter 2 Rigid Body Motion

- 3 Rigid Motion in \mathbb{R}^3
 - Exponential coordinates of SE(3)
 - Twists
 - se(3)
 - The Exponential Map
 - Screw Motion
 - What is a Screw
 - Twist associated with a Screw
 - Screw associated with a Twist

- 1 Forward kinematics
 - Joint Space

Corresponding $g \in SE(3)$:

 $g \cdot p = q + e^{\hat{\omega}\theta}(p - q) + h\theta\omega$

$$g \cdot \left[\begin{array}{c} p \\ 1 \end{array} \right] = \left[\begin{array}{c} e^{\hat{\omega}\theta} \\ 0 \end{array} \right] \left(I - e^{\hat{\omega}\theta} \right) q + h\theta\omega \left[\begin{array}{c} p \\ 1 \end{array} \right] \Rightarrow$$

$$g = \begin{bmatrix} e^{\hat{\omega}\theta} & (I - e^{\hat{\omega}\theta})q + h\theta\omega \\ 0 & 1 \end{bmatrix}$$

Chapter 2 Rigid Body Motion

Rigid Body Transformations

Rotational motion in \mathbb{R}^3

Rigid Motion in \mathbb{R}^3

Velocity of a Rigid Body

Wrenches and Reciprocal

Corresponding $g \in SE(3)$:

$$g \cdot p = q + e^{\hat{\omega}\theta}(p - q) + h\theta\omega$$

$$g \cdot \begin{bmatrix} p \\ 1 \end{bmatrix} = \begin{bmatrix} e^{\hat{\omega}\theta} & (I - e^{\hat{\omega}\theta})q + h\theta\omega \end{bmatrix} \begin{bmatrix} p \\ 1 \end{bmatrix} \Rightarrow$$

$$g = \begin{bmatrix} e^{\hat{\omega}\theta} & (I - e^{\hat{\omega}\theta})q + h\theta\omega \end{bmatrix}$$

On the other hand...

$$e^{\hat{\xi}\theta} = \begin{bmatrix} e^{\hat{\omega}\theta} & (I - e^{\hat{\omega}\theta})\omega \times v + \omega\omega^T v\theta \\ 0 & 1 \end{bmatrix}$$

If we let $v = -\omega \times q + h\omega$, then

$$(I - e^{\hat{\omega}\theta})(-\hat{\omega}^2 q) = (I - e^{\hat{\omega}\theta})(-\omega\omega^T q + q) = (I - e^{\hat{\omega}\theta})q$$

Thus,
$$e^{\hat{\xi}\theta} = g$$

Chapter 2 Rigid Body Motion

Rigid Body Transformations

Rotational motion in \mathbb{R}^3

Rigid Motion in \mathbb{R}^3

Velocity of a Rigid Body

Wrenches and Reciprocal Screws

Corresponding $g \in SE(3)$:

$$g \cdot p = q + e^{\hat{\omega}\theta}(p - q) + h\theta\omega$$

$$g \cdot \begin{bmatrix} p \\ 1 \end{bmatrix} = \begin{bmatrix} e^{\hat{\omega}\theta} & (I - e^{\hat{\omega}\theta})q + h\theta\omega \end{bmatrix} \begin{bmatrix} p \\ 1 \end{bmatrix} \Rightarrow$$

$$g = \begin{bmatrix} e^{\hat{\omega}\theta} & (I - e^{\hat{\omega}\theta})q + h\theta\omega \end{bmatrix}$$

Rotational motion in \mathbb{R}^3

Rigid Motion in \mathbb{R}^3

Velocity of a Rigid Body

Wrenches and Reciprocal Screws

Reference

On the other hand...

$$e^{\hat{\xi}\theta} = \begin{bmatrix} e^{\hat{\omega}\theta} & (I - e^{\hat{\omega}\theta})\omega \times \nu + \omega\omega^T \nu\theta \\ 0 & 1 \end{bmatrix}$$

If we let $v = -\omega \times q + h\omega$, then

$$(I - e^{\hat{\omega}\theta})(-\hat{\omega}^2 q) = (I - e^{\hat{\omega}\theta})(-\omega\omega^T q + q) = (I - e^{\hat{\omega}\theta})q$$

Thus,
$$e^{\hat{\xi}\theta} = g$$

For pure rotation (h = 0): $\xi = (-\omega \times q, \omega)$

For pure translation: $g = \begin{bmatrix} I & v\theta \\ 0 & 1 \end{bmatrix}$, $\Rightarrow \xi = (v, 0)$, and $e^{\hat{\xi}\theta} = g$

Chapter 2 Rigid Body Motion

- 3 Rigid Motion in \mathbb{R}^3
 - Exponential coordinates of SE(3)
 - Twists
 - se(3)
 - The Exponential Map
 - Screw Motion
 - What is a Screw
 - Twist associated with a Screw
 - Screw associated with a Twist

- 1 Forward kinematics
 - Joint Space

□ Screw associated with a twist:

$$\xi = (v, \omega) \in \mathbb{R}^6$$

Pitch:
$$h = \begin{cases} \frac{\omega^T v}{\|\omega\|^2}, & \text{if } \omega \neq 0 \\ \infty, & \text{if } \omega = 0 \end{cases}$$

2 Axis:
$$l = \begin{cases} \frac{\omega \times v}{\|\omega\|^2} + \lambda \omega, & \lambda \in \mathbb{R}, \text{ if } \omega \neq 0 \\ 0 + \lambda v, & \lambda \in \mathbb{R}, \text{ if } \omega = 0 \end{cases}$$

Magnitude:
$$M = \begin{cases} \|\omega\|, & \text{if } \omega \neq 0 \\ \|\nu\|, & \text{if } \omega = 0 \end{cases}$$

Chapter 2 Rigid Body Motion

Rigid Body Transformations

Rotational motion in \mathbb{R}^3

Rigid Motion in \mathbb{R}^3

Velocity of a Rigid Body

Wrenches and Reciprocal Screws

□ Screw associated with a twist:

$$\xi = (\nu, \omega) \in \mathbb{R}^6$$

Pitch:
$$h = \begin{cases} \frac{\omega^T v}{\|\omega\|^2}, & \text{if } \omega \neq 0 \\ \infty, & \text{if } \omega = 0 \end{cases}$$

2 Axis:
$$l = \begin{cases} \frac{\omega \times v}{\|\omega\|^2} + \lambda \omega, & \lambda \in \mathbb{R}, \text{ if } \omega \neq 0 \\ 0 + \lambda v, & \lambda \in \mathbb{R}, \text{ if } \omega = 0 \end{cases}$$

Magnitude:
$$M = \begin{cases} \|\omega\|, & \text{if } \omega \neq 0 \\ \|\nu\|, & \text{if } \omega = 0 \end{cases}$$

Special cases:

- h = 0, Pure rotation (revolute joint)

Chapter 2 Rigid Body Motion

Rigid Body Transformations

Rotational motion in \mathbb{R}^3

Rigid Motion in \mathbb{R}^3

Velocity of a Rigid Body

Wrenches and Reciprocal

Chapter 2 Rigid Body Motion

Rigid Body Transforma tions

Rotational motion in \mathbb{R}^3

Rigid Motion in \mathbb{R}^3

Velocity of a Rigid Body

Wrenches and Reciprocal

Screw	Twist: $\hat{\xi} heta$
Case 1:	
Pitch: $h = \infty$	$\theta = M$,
Axis: $l = \{q + \lambda v v = 1, \lambda \in \mathbb{R}\}$	$\hat{\xi} = \begin{bmatrix} 0 & v \\ 0 & 0 \end{bmatrix}$
Magnitude: M	
Case 2:	
Pitch: $h \neq \infty$	$\theta = M$,
Axis: $l = \{q + \lambda \omega \ \omega\ = 1, \lambda \in \mathbb{R}\}$	$\hat{\xi} = \begin{bmatrix} \hat{\omega} & -\hat{\omega}q + h\omega \end{bmatrix}$
Magnitude: M	$\begin{bmatrix} \zeta - [0 \\ 0 \end{bmatrix}$

Chapter 2 Rigid Body Motion

Rigid Body Transforma tions

Rotational motion in \mathbb{R}^3

Rigid Motion in \mathbb{R}^3

Velocity of a Rigid Body

Wrenches and Reciprocal Screws

Reference

Screw	Twist: $\hat{\xi} heta$
Case 1:	
Pitch: $h = \infty$	$\theta = M$,
Axis: $l = \{q + \lambda v v = 1, \lambda \in \mathbb{R}\}$	$\hat{\xi} = \begin{bmatrix} 0 & v \\ 0 & 0 \end{bmatrix}$
Magnitude: M	ζ – [0 0]
Case 2:	
Pitch: $h \neq \infty$	$\theta = M$,
Axis: $l = \{q + \lambda \omega \ \omega\ = 1, \lambda \in \mathbb{R}\}$	$\hat{\xi} = \begin{bmatrix} \hat{\omega} & -\hat{\omega}q + h\omega \\ 0 & 0 \end{bmatrix}$
Magnitude: M	ζ – [0

Definition: Screw Motion

Rotation about an axis by $\theta=M$, followed by translation about the same axis by $h\theta$

42

2.3 Rigid motion in \mathbb{R}^3

Chapter
2 Rigid Body
Motion

Rigid Body Transformations

Rotational motion in \mathbb{R}^3

Rigid Motion in \mathbb{R}^3

Velocity of a Rigid Body

Wrenches and Reciprocal

Reference

Theorem 2 (Chasles):

Every rigid body motion can be realized by a rotation about an axis combined with a translation parallel to that axis.

1793-1880

Chapter
2 Rigid Body
Motion

Rigid Body Transforma tions

Rotational motion in \mathbb{R}^3

Rigid Motion in \mathbb{R}^3

Velocity of a Rigid Body

Wrenches and Reciprocal Screws

Reference

Theorem 2 (Chasles):

Every rigid body motion can be realized by a rotation about an axis combined with a translation parallel to that axis.

1793-1880

Proof:

For $\hat{\xi} \in se(3)$:

$$\hat{\xi} = \hat{\xi}_1 + \hat{\xi}_2 = \begin{bmatrix} \hat{\omega} & -\omega \times q \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & h\omega \\ 0 & 0 \end{bmatrix}$$
$$\begin{bmatrix} \hat{\xi}_1, \hat{\xi}_2 \end{bmatrix} = 0 \Rightarrow e^{\hat{\xi}\theta} = e^{\hat{\xi}_1\theta}e^{\hat{\xi}_2\theta}$$

† End of Section †

Chapter 2 Rigid Body Motion

- 3 Rigid Motion in \mathbb{R}^3
 - Exponential coordinates of SE(3)
 - Twists
 - se(3)
 - The Exponential Map
 - Screw Motion
 - What is a Screw
 - Twist associated with a Screw
 - Screw associated with a Twist

- 1 Forward kinematics
 - Joint Space

Chapter 3 Manipulator Kinematics

Forward kinematics

Inverse Kinematics

Manipulator Jacobian

Redundant Manipulators

Reference

- 1 Forward kinematics
- 2 Inverse Kinematics
- 3 Manipulator Jacobian
- 4 Redundant Manipulators
- 5 Reference

Chapter 2 Rigid Body Motion

- 3 Rigid Motion in \mathbb{R}^3
 - Exponential coordinates of SE(3)
 - Twists
 - se(3)
 - The Exponential Map
 - Screw Motion
 - What is a Screw
 - Twist associated with a Screw
 - Screw associated with a Twist

- 1 Forward kinematics
 - Joint Space

3

3.1 Forward kinematics

Chapter
3 Manipulator
Kinematics

Forward kinematics

Inverse Kinematics

Manipulator Jacobian

Redundant Manipulators

Reference

(a) Adept Cobra i600 (SCARA) Figure 3.1

Chapter 3 Manipulator Kinematics

Forward kinematics

Kinematics

- (a) Adept Cobra i600 (SCARA)
- (b) Forward kinematics of SCARA Figure 3.1
- ♦ Lower Pair Joints:

revolute joint $S^1 \mapsto SO(2)$ prismatic joint $\mathbb{R} \mapsto T(1)$

 \mathcal{R}

♦ Forward kinematics:

base: stationary

Chapter 3 Manipulator Kinematics

Forward kinematics

Kinematics

- (a) Adept Cobra i600 (SCARA)
 - (b) Forward kinematics of SCARA Figure 3.1
- ♦ Lower Pair Joints:

revolute joint $S^1 \mapsto SO(2)$ prismatic joint $\mathbb{R} \mapsto T(1)$

♦ Forward kinematics:

base: stationary

Link 1: first movable link

Chapter 3 Manipulator Kinematics

Forward kinematics

Kinematics

- (a) Adept Cobra i600 (SCARA)
 - (b) Forward kinematics of SCARA Figure 3.1
- ♦ Lower Pair Joints:

revolute joint $S^1 \mapsto SO(2)$ prismatic joint $\mathbb{R} \mapsto T(1)$

♦ Forward kinematics:

joint n joint 1

base: stationary Link 1: first movable link

Robots in Practice SCARA

4

Chapter
3 Manipulator
Kinematics

Forward kinematics

Inverse Kinematics

Manipulator Jacobian

Redundant Manipulators

Reference

□ Joint space:

Revolute joint: S^1 , $\theta_i \in S^1$ or $\theta_i \in [-\pi, \pi]$

Prismatic joint: \mathbb{R}

Joint space: $Q: \underline{S^1 \times \cdots \times S^1} \times \underline{\mathbb{R} \times \cdots \times \mathbb{R}}$

no. of R joint no. of P joint

□ Joint space:

Revolute joint: S^1 , $\theta_i \in S^1$ or $\theta_i \in [-\pi, \pi]$

Prismatic joint: \mathbb{R}

Smatic joint: \mathbb{R} Joint space: $Q: \underline{S^1 \times \cdots \times S^1} \times \underline{\mathbb{R} \times \cdots \times \mathbb{R}}$

no. of *R* joint no. of *P* joint

Chapter 3 Manipulator Kinematics

Forward kinematics

Kinematics

Adept
$$Q: S^1 \times S^1 \times S^1 \times \mathbb{R}$$

Elbow $Q = \Gamma^6: \underbrace{S^1 \times \cdots \times S^1}_{6}$

Chapter 3 Manipulator Kinematics

Forward kinematics

Kinematics

□ Joint space:

Revolute joint: $S^1, \theta_i \in S^1 \text{ or } \theta_i \in [-\pi, \pi]$

Prismatic joint: \mathbb{R}

Joint space: $Q: \underline{S^1 \times \cdots \times S^1} \times \underline{\mathbb{R} \times \cdots \times \mathbb{R}}$ no. of *R* joint no. of *P* joint

Adept
$$Q: S^1 \times S^1 \times S^1 \times \mathbb{R}$$

Elbow $Q = \Gamma^6: \underbrace{S^1 \times \cdots \times S^1}_{6}$

Reference (nominal) joint config: $\theta = (0, 0, ..., 0) \in Q$ Reference (nominal) end-effector config: $g_{st}(0) \in SE(3)$

Chapter 3 Manipulator Kinematics

Forward kinematics

Kinematics

□ Joint space:

Revolute joint: $S^1, \theta_i \in S^1 \text{ or } \theta_i \in [-\pi, \pi]$

Prismatic joint: \mathbb{R}

Smatic joint: \mathbb{R} Joint space: $Q: \underline{S^1 \times \cdots \times S^1} \times \underline{\mathbb{R} \times \cdots \times \mathbb{R}}$ no. of *R* joint no. of *P* joint

Adept
$$Q: S^1 \times S^1 \times S^1 \times \mathbb{R}$$

Elbow $Q = \Gamma^6: \underbrace{S^1 \times \cdots \times S^1}_{6}$

Reference (nominal) joint config: $\theta = (0, 0, ..., 0) \in Q$ Reference (nominal) end-effector config: $g_{st}(0) \in SE(3)$

Arbitrary configuration $g_{st}(\theta)$:

$$g_{st}:\theta\in Q\mapsto g_{st}(\theta)\in SE(3)$$

Chapter 2 Rigid Body Motion

- 3 Rigid Motion in \mathbb{R}^3
 - Exponential coordinates of SE(3)
 - Twists
 - *se*(3)
 - The Exponential Map
 - Screw Motion
 - What is a Screw
 - Twist associated with a Screw
 - Screw associated with a Twist

- 1 Forward kinematics
 - Joint Space

□ Classical Approach:

 $g_{st}(\theta_1, \theta_2) = g_{st}(\theta_1) \cdot g_{l_1 l_2} \cdot g_{l_2 t}$

Disadvantage: A coordinate frame needed for each link

Chapter
3 Manipulator
Kinematics

Forward kinematics

Inverse Kinematics

Manipulator Jacobian

Redundant Manipulators

□ Classical Approach:

$$g_{st}(\theta_1, \theta_2) = g_{st}(\theta_1) \cdot g_{l_1 l_2} \cdot g_{l_2 t}$$

Disadvantage: A coordinate frame needed for each link

□ The product of exponentials formula:

Consider Fig 3.2.

Figure 3.2: A two degree of freedom manipulator

(Continues next slide)

Chapter
3 Manipulator
Kinematics

Forward kinematics

Inverse Kinematics

Manipulator Jacobian

Redundant Manipulators