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Lecture 3
Image Primitives

and
Correspondence
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Given an image point in left image, what is the (corresponding) point in the right
image, which is the projection of the same 3-D point
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Matching - Correspondence
s

(R(%),T(%))

Lambertian assumption I1(x1) = R(p) = I>(x5)
Rigid body motion x> = h(x1) = ﬁ(RAl(X)Xl + 1)
Correspondence I1(x1) = I>(h(x1))
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By 1Local Deformation Models

Translational model

h(x) =x+d I1(x1) = Ix(h(x1))
Affine model
h(x) = Ax+d I1(x1) = I2(h(x1))

Transformation of the intensity values and occlusions
I1(x1) = fo(X, g)I2(h(x1) + n(h(x1))
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) %’? Region based Similarity Metric

e Sum of squared differences

SSD(h) = Sscw (x) 1K) — I2(h(%)||?

e Normalize cross-correlation

> wix) [1(X)—11) (I2(h(X))—12))

NCC(h) = _ —
VEw e 11112 Ly 0 (2(A(R)~12)?)

e Sum of absolute differences

SAD(h) = Tgew (0 111(%) — I2(h(%))]
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Feature Tracking and Optical Flow

e Translational model

I1(x1) = I>(x1 + Ax)

e Small baseline

I(x(t),t) = I(x(t) + udt,t + dt)

e RHS approx. by first two terms of Taylor series

VIx), ) a+ Ii(x(t),t) =0

e Brightness constancy constraint
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Optical Flow: connect 2D and 3D motions

X t. WyZ — WY
Y | == | t, | — | wer — w2 (3.2)
Z t. Wzl — WyT
Assume the image plane lies at f = 1, then =z = % and y = % Taking the
derivative, we have
. XZ—-ZX . YZ-2ZY
T = 73 VY = 3 : (3.3)
Substitute X,Y, Z in Eq.(3.3) using Eq.(3.2), plug in = = % = %, and
simplify it, we get
t, 5 Wy
w|_ (x| _1|-1 0 = | =y —(1+2°) y "
v| || Zz| 0 -1 vy ty 1+ 92 —xy —x wy
(34)
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Optical Flow

Time of impact
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e Normal flow
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‘ Optical Flow

e Integrate around over image patch

Eb(u) — ZW(aj,y) [VIT(ZC: Y, t)ll(il’), y)—|—lt(£l?, Y, t)]z

e Solve VE(w) = 2 Y VI(VITu+I)

W(z,y) ,
N QW%C:,?J) <[ Iiz;y I;éy ] T [ Zg D
u =30
Gu+b=0
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iﬁ; Optical Flow, Feature Tracking

u= -G 1b

G:[z@ Zh@]

S Ily LI

Conceptually:

rank(G) = 0 blank wall problem
rank(G) = 1 aperture problem
rank(G) = 2 enough texture — good feature candidates

In reality: choice of threshold is involved
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Computing Derivatives

6[ aI 1 1T
(L

Convolution with difference of GaussianS'

L[z,y] = I[x,y] * g'[z] * gly] = Z Z I[k, 11g'[x — Klgly — 1,
k_—gz_——

L[z, y] = Iz, y] = gla] * g'[y] = Z Z I[k, Nglz — Klg'[y — 1.

h=—2 =2
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Qﬁ Optical Flow

 Previous method - assumption locally constant flow
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e Alternative regularization techniques (locally smooth flow fields,
integration along contours)
e Qualitative properties of the motion fields
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. 3D Reconstruction - Preview

MASKS © 2004 Invitation to 3D vision



‘WY | Point Feature Extraction

o | ZIF Tl
S Lly I

e Compute eigenvalues of G
o If smalest eigenvalue o of G is bigger than t - mark pixel as candidate

feature point

e Alternatively feature quality function (Harris Corner Detector)

C(G) = det(G@) + k - trace?(G)
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Matching Features with Scale and Rotation

SIFT Features
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More Advanced Features -- SIFT

Scale-Invariant Feature Transform (SIFT)

G(xa Y, kS) — ;6_(‘%2—’_3}2)/2’&52

27 (kS)2
k=12

Scale
(next
octave)

Scale
(first
octave)

Scale L)
=, )c?é

Difference of 707 7
Gaussian Gaussian (DOG) —

(a) (b)

Figure 7.11 Scale-space feature detection using a sub-octave Difference of Gaussian pyra-
mid (Lowe 2004) © 2004 Springer: (a) Adjacent levels of a sub-octave Gaussian pyramid are
subtracted to produce Difference of Gaussian images; (b) extrema (maxima and minima) in
the resulting 3D volume are detected by comparing a pixel to its 26 neighbors.

MASKS © 2004 Rick Szeliski, Computer Vision: Algorithms and Applications, 2021.
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Figure 7.12 A dominant orientation estimate can be computed by creating a histogram of
all the gradient orientations (weighted by their magnitudes or after thresholding out small
gradients) and then finding the significant peaks in this distribution (Lowe 2004) © 2004
Springer.
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More Advanced Features — Affine Invariance

Figure 7.13  Affine region detectors used to match two images taken from dramatically
different viewpoints (Mikolajczyk and Schmid 2004 ) © 2004 Springer.

Figure 7.14  Affine normalization using the second moment matrices, as described by
Mikolajczyk, Tuytelaars et al. (2005) © 2005 Springer. After image coordinates are trans-
formed using the matrices A 2 and Al_l/ 2 they are related by a pure rotation R, which

can be estimated using a dominant orientation technique.
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More Advanced Features — Many Features...

Maximally Stable Extremal Regions (MSER) detector developed by
(Matas, Chum et al. 2004)

* SURF (Bay, Ess et al. 2008), which uses integral images for faster
convolutions;

 FAST and FASTER (Rosten, Porter, and Drummond 2010), one of the
first learned detectors;

* BRISK (Leutenegger, Chli, and Siegwart 2011), which uses a scale-
space FAST detector together with a bit-string descriptor;

* ORB (Rublee, Rabaud et al. 2011), which adds orientation to FAST;
+ KAZE (Alcantarilla, Bartoli, and Davison 2012) and Accelerated-KAZE

(Alcantarilla, Nuevo, and Bartoli 2013), which use non-linear diffusion
to select the scale for feature detection.

Mother of All Features (Microsoft) ---> Learned Features

MASKS © 2004 Rick Szeliski, Computer Vision: Algorithms and Applications, 2021.
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More Advanced Features — Learned Junctions

Exploring Structures — Junction Dictionary and Consistent Labeling
[Huffman-Clowes, 1971]

12 valid configurations for trihedral
vertex
L-, Y-, W-types
Represents just 11.5% of all possible
configurations

T-junction occurs when an edge occludes
another partially.

Does not correspond to a three-dimensional
vertex.
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More Advanced Features — Learned Junctions

We first extract “"C-junctions” C-Junction Heat Map

-

T-Junction Heat Map
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{ ! %’? Edge or Line Features

Exploring Local Structures — Line Labeling [Huffman-Clowes, 1971]

Every line in natural pictures of polyhedron objects
should have exactly one of the four labels

- Convex (+), concave (-), or occluding (=, <)

I

[
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{ ! %’;‘ Edge Detection

original image gradient magnitude

Canny edge detector
e Compute image derivatives

e if gradient magnitude > vt and the value is a local maximum along gradient
direction — pixel is an edge candidate
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Edge Detection
Based on Local Gradients

Edge Map
Learned via DNN

Images Edge Map
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Hough
Transform

Non-max suppressed gradient magnitude
e Edge detection, non-maximum suppression
(traditionally Hough Transform — issues of resolution, threshold
selection and search for peaks in Hough space)
e Connected components on edge pixels with similar orientation
- group pixels with common orientation

Kiryati, Nahum, Yuval Eldar, and Alfred M. Bruckstein. "A probabilistic Hough transform.”
Pattern recognition 24.4 (1991): 303-316.



Line Segment Detection

S ziy; Lyl

second moment matrix
associated with each
connected component

e Line fitting: Lines determined from eigenvalues and eigenvectors of A
e Candidate line segments - associated line quality

Von Gioi, et al. "LSD: A fast line segment detector with a false detection control.” PAMI 32.4, 2008



Line Segment Clustering:
* J-Linkage [1]

* Line RANSAC [2]

* Angle Histogram [3]

[1] Tardif, Jean-Philippe. "Non-iterative approach for fast and accurate vanishing point
detection." 2009 ICCV.

[2] Bazin, Jean-Charles, and Marc Pollefeys. "3-line ransac for orthogonal vanishing point
detection." 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE,
2012.

[3] Li, Bo, et al. "Vanishing point detection using cascaded 1D Hough Transform from single
images." Pattern Recognition Letters 33.1 (2012): 1-8.




Line/Junction Detection: Learning Based

Wireframe Representation

- Let W= (V,E) be a wireframe
- Foreach VieV
= Pp; represents its coordinate in image space

= Z; represents its depth its in camera space

t, € {C, T} represents type

MASKS © 2004 Yichao Zhou, Haozhi Qi, Simon Zhai, Qi Sun, Zhili Chen, Li-Yi Wei, Yi Ma (2018).
Learning to Reconstruct 3D Manhattan Wireframes from a Single Image. ICCV 2019



Line/Junction Detection: Learning Based
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MASKS © 2004 Yichao Zhou, Haozhi Qi, Yi Ma (2019). End-to-End Wireframe Parsing. ICCV 2019.
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