
Lab 8: Building Occupancy Grids with TurtleBot∗

EECS/ME/BIOE C106A/206A Fall 2022

Goals

By the end of this lab, you should be able to:

• Use the ROS parameter server to set parameter values that can be shared across multiple nodes

• Understand and explain how an occupancy grid works and when to use one

• Map out the lab space using your own custom occupancy grid

• Point out any important deficiencies in your implementation

Contents

1 The ROS parameter server 2

2 Generating and updating the occupancy grid 2
2.1 Updating with log-odds . 2
2.2 Using the laser scan . 3

3 Testing your occupancy grid 4

Introduction

In this lab, we will build and test one of the most useful datastructures in mobile robotics: the occupancy grid.1

The key idea behind the occupancy grid is to represent space as — you guessed it — a grid, in which every cell, or
voxel, is either occupied or free. Since nothing is ever really certain in life (i.e., measurements are noisy), occupancy
grids actually keep track of the probability that each cell is occupied. When the robot receives a measurement of the
environment, typically from a laser scanner, it updates these probabilities to incorporate the new information.

This lab is broken up into three phases:

1. Learn how to use the ROS parameter server.

2. Write the key steps in an occupancy grid update.

3. Test your implementation and identify any shortcomings.

∗Developed by David Fridovich-Keil and Laura Hallock, Fall 2017. Updated by Valmik Prabhu, Nandita Iyer, Ravi Pandya, and
Philipp Wu, Fall 2018.

1A Google search for “occupancy grid” turns up lots of great references that go into more detail.

1

1 The ROS parameter server

We haven’t really exposed you to the ROS parameter server before, but since it is one of the more useful features
of ROS, we want you to get some practice using it.2 ROS parameters are key-value pairs that ROS allows you to
specify when launching a nodes (e.g., in a launch file) that may be queried by those nodes at run-time. This can be
an extremely useful tool for writing flexible code and for enforcing that multiple nodes hold the same value for some
particular variable.

Begin by creating a new workspace called lab8 in your ros_workspaces directory. Next, create a package
named mapping inside the src directory of your lab8 workspace. It should depend on rospy, visualization_msgs,
geometry_msgs, sensor_msgs, std_msgs, and tf2_ros.

Our starter code for this lab is on GitHub for you to clone so that you can easily access any updates we make to
the starter code. It can be found at https://github.com/ucb-ee106/106a-fa22-labs-starter/tree/main/Lab8. We also
highly recommend you make a private GitHub repository for each of your labs just in case.

Create a folder in the mapping package called launch and copy the demo.launch file from the starter code into
the new folder. Don’t forget to build and source your workspace!

Inside the file demo.launch, you’ll see that a number of command-line arguments are declared (along with default
values). These arguments are then mapped to specific parameters in a node called mapper. These parameters will
need to be read in by that node at run-time.

From the starter code, move occupancy_grid_2d.py and mapping_node.py into the appropriate location in your
mapping package and make the files executable. In the occupancy_grid_2d.py file, locate the LoadParameters

function. We’ve loaded one parameter for you, but you’ll need to finish this function by loading the rest. Note that
two of the variables in occupancy_grid_2d.py, x_res and y_res, are not on the parameter server. How do you
think you should generate these variables? (You should not be editing the launch file.)

Checkpoint 1

Submit a checkoff request at https://tinyurl.com/fa22-106alab for a staff member to come and check off your work.
At this point you should be able to:

• Run demo.launch without any error messages complaining about failing to load parameters.

• Explain each parameter you have loaded in LoadParameters.

2 Generating and updating the occupancy grid

Now for the fun part! In the file occupancy_grid_2d.py file, locate the function SensorCallback and fill in the
details. The main idea here is that each grid cell contains the log-odds ratio of occupancy.

2.1 Updating with log-odds

We briefly introduce the mathematics of the log-odd update rule. Let Xij be a binary random variable that indicates
the true occupancy of the cell at row i and column j, where Xij = 1 corresponds to cell being occupied and Xij = 0
being free. Let Yij be another binary random variable that represents the measured occupancy of that cell.

By Bayes’ Rule, we have

Pr(Xij | Yij) :=
Pr(Yij | Xij)Pr(Xij)

Pr(Yij)
. (1)

Define the odd of a binary random variable Z as the ratio of the following two probability

odd(Z) =
Pr(Z = 1)

Pr(Z = 0)
.

2See http://wiki.ros.org/rospy_tutorials/Tutorials/Parameters for a more detailed description of the server’s purpose and usage.

2

https://github.com/ucb-ee106/106a-fa22-labs-starter/tree/main/Lab8
https://tinyurl.com/fa22-106alab
http://wiki.ros.org/rospy_tutorials/Tutorials/Parameters

It is convenient to rewrite the Bayes’ Rule (1) with odds below.

Pr(Xij = 1 | Yij)

Pr(Xij = 0 | Yij)
=

Pr(Yij | Xij = 1)Pr(Xij = 1)/Pr(Yij)

Pr(Yij | Xij = 0)Pr(Xij = 0)/Pr(Yij)
,

Pr(Xij = 1 | Yij)

Pr(Xij = 0 | Yij)
=

Pr(Yij | Xij = 1)Pr(Xij = 1)

Pr(Yij | Xij = 0)Pr(Xij = 0)
,

log
Pr(Xij = 1 | Yij)

Pr(Xij = 0 | Yij)
= log

Pr(Yij | Xij = 1)

Pr(Yij | Xij = 0)
+ log

Pr(Xij = 1)

Pr(Xij = 0)
,

logodd(Xij | Yij) = log
Pr(Yij | Xij = 1)

Pr(Yij | Xij = 0)
+ logodd(Xij).

(2)

Without loss of generality, rename the following log odd ratios

∆occ := log
Pr(Yij = 1 | Xij = 1)

Pr(Yij = 1 | Xij = 0)
, ∆free := log

Pr(Yij = 0 | Xij = 1)

Pr(Yij = 0 | Xij = 0)
. (3)

Substituting (3) into (2), we have

logodd(Xij | Yij = 1) = ∆occ + logodd(Xij),

logodd(Xij | Yij = 0) = ∆free + logodd(Xij),
(4)

where logodd(Xij) is the existing log odd ratio at cell (i, j), logodd(Xij | Yij = 1) the updated log odd ratio after
observing the cell (i, j) being occupied, and logodd(Xij | Yij = 0) the updated log odd ratio after observing it being
unoccupied.

This may seem like an unnecessary mathematical complication, but it’s actually very useful: conversion from
probability to log-odds transforms the range of possible values from [0, 1], which is bounded and centered around 0.5,
to the range (−∞,∞), which is unbounded and centered around 0, making things easier for analysis. The symmetry
of log-odds around 0 is illustrated in the following table:

Probability Odds Log-Odds
0.1 0.111 -2.197
0.2 0.250 -1.386
0.3 0.428 -0.847
0.4 0.667 -0.405
0.5 1.000 0.000
0.6 1.500 0.405
0.7 2.333 0.847
0.8 4.000 1.386
0.9 9.000 2.197

When a scan ray terminates at a particular cell, that cell’s log-odds ratio is incremented by some small amount
— i.e., logodd(Xij | Yij = 1) = ∆occ + logodd(Xij) — and then upper bounded by a maximum threshold to ensure
numerical stability. Likewise, when the ray passes through a cell (and does not terminate there), that cell’s log-odds
ratio is decremented by some other amount — i.e., logodd(Xij | Yij = 0) = ∆free+logodd(Xij), where by convention
∆free is negative — and similarly lower bounded by a minimum threshold.

For a video introduction of occupancy grid map and the log-odd update rule, please refer to the following
tutorial videos by UPenn: https://tinyurl.com/ogintroduction and https://tinyurl.com/oglogodd. The
videos explain the rationale behind log-odd update but does not cover the threshold saturation technique.

2.2 Using the laser scan

Before starting any edits, read through the inline comments and try to understand what the function is doing at each
step. This callback function recieves a sensor_msgs/LaserScan message, which represents a single line depth scan
around the robot (as would be generated by a LIDAR). The scan begins at some angle, gathers range information
at a certain angular increment, and ends at some second angle. Use rosmsg show or the online ROS documentation
to see the contents of this message.

The callback function iterates through each ray of the scan using the enumerate function (look up the documen-
tation for this function if you don’t understand what it’s doing). The first thing you’ll be implementing is finding the

3

https://tinyurl.com/ogintroduction
https://tinyurl.com/oglogodd

Figure 1: Example of occupancy grid

angle of the ray in the fixed frame. A quick look at demo.launch shows that the fixed frame is called odom, while the
sensor frame is base_footprint. The frame odom, which stands for odometry 3, is coincident with base_footprint

when the robot is turned on. As the robot moves, odom moves in the opposite direction relative to base_footprint.
Thus, if you set your fixed frame in RViz as odom, you’ll see base_footprint moving as the turtlebot moves in the
real world. Note: if you move the turtlebot manually (say by picking it up), the odometry won’t be able to detect it
and the odom frame will be wrong. If you do this, restart the bringup sequence on your turtlebot to reset the odom
frame.

The next thing you’ll be doing is ”walking” backwards along the ray from the scan point to the sensor, updating
the log-odds in each voxel the ray passes through. The numpy.arange function can be helpful in defining your loop.
The function PointToVoxel, defined below SensorCallback, may be useful as well. If a voxel is occupied, you should
increase the log odds at that voxel by your occupied update value, thresholding it at your occupied threshold value.
If a voxel is free, you should increase the log odds at that voxel by your free update value, thresholding it at your
free threshold value. Remember that you should only be updating each voxel once per ray.

When you’re done, try running the launch file again, and make sure you don’t get any error messages.

3 Testing your occupancy grid

Look back at the launch file again. You’ll notice that the node’s main source file is mapping_node.py, not
occupancy_grid_2d.py. (Although this project is small by most standards, it is generally good practice to sep-
arate the actual executable node file from other files implementing different classes that your node uses.) Examine
how the mapping_node.py file creates an occupancy grid, initializes it, and on success just idles. If you trace that
initialization call into the OccupancyGrid2d class, you’ll see that initialization loads all parameters, registers pub-
lishers and subscribers, and sets up any other class variables. If any of that fails, it returns False, which causes the
whole node to crash. This is a very safe way to build your system because it minimizes the chance that your code
crashes mid-operation. We strongly encourage you to use this sort of architecture in your projects.

Bringup the TurtleBot with a minimal launch, and then run the launch file from the mapping package. Next, we
want to publish a transform between the base frame and the laser scan at the base so that RVIZ can visualize our
laser scan. We will do this by running:

rosrun tf2_ros static_transform_publisher 0.0 0.0 0.0 0.0 0.0 0.0 base_footprint base_scan

Now open RViz. Find and visualize the topic on which the occupancy grid is being published. You’ll also need
to change the fixed frame to odom and add tf to the display so you can see where the TurtleBot is. Add the
/scan/Laserscan topic to the display to show the laser scanner’s output in real time.

3Odometry is the use of data from motion sensors to estimate change in position over time. It is used in robotics by some legged or
wheeled robots to estimate their position relative to a starting location.

4

Drive the TurtleBot around with the turtlebot_teleop node we used in Lab 4. You should see the floorplan
begin to emerge as you drive around. Do you notice any systematic errors? Where are they coming from, and how
would you address them?

Next, experiment with changing some of the parameters defined in your parameter server. While you can simply
change the values in your launch file, it’s cleanest (and most convenient) to set them via the command line so you
can experiment with many different values without changing the defaults. (Hint: You’ve actually done this before
using Baxter/Sawyer — electric_gripper is a parameter value!)

Experiment with changing the downsampling rate parameter. What is the downsampling rate’s function, and
why is it important? (The comments in the occupancy_grid_2d.py file might be helpful here.)

Lastly, experiment with changing the resolution of the map. (Note that the length of each cell isn’t explicitly
defined in the parameter server but can be calculated from the values there; which parameters do you need to modify
to make the cells larger and smaller?) How does your map behave differently? Do you notice any change in error
patterns?

Checkpoint 2

Submit a checkoff request at https://tinyurl.com/fa22-106alab for a staff member to come and check off your work.
At this point you should be able to:

• Demonstrate the odometry-based localization and the associated map

• Describe any shortcomings you notice in the result, and hypothesize why they exist

• Explain any bottlenecks in the code — what’s the slowest part of the computation?

• Change a parameter of the launch file from the command line

5

https://tinyurl.com/fa22-106alab

	The ROS parameter server
	Generating and updating the occupancy grid
	Updating with log-odds
	Using the laser scan

	Testing your occupancy grid

