
EE106A: Lab 3 - Forward Kinematics/Coordinate Transformations∗

Fall 2022

Goals

By the end of this lab you should be able to:

• Compute the forward kinematics map for a robotic manipulator

• Compare your own forward kinematics implementation to the functionality provided by ROS

• Use the powerful functionality of tf2 in your own ROS node.

• Make Sawyer move to simple joint position goals

• View the sensor and state data published by Sawyer using RViz

Relevant Tutorials and Documentation:

• Sawyer SDK: http://sdk.rethinkrobotics.com/intera/API_Reference

• Sawyer Joint Position Control Examples :
http://sdk.rethinkrobotics.com/intera/Joint_Position_Example

• tf2 Tutorials: http://wiki.ros.org/tf2/Tutorials

Contents

1 Forward kinematics 2
1.1 Kinematic functions . 2
1.2 Set up your workspace . 2
1.3 Writing the forward kinematics map . 2
1.4 Compare with built-in ROS functionality . 3
1.5 Writing a tf Listener . 4

2 Make Sawyer move 7

Introduction

Coordinate transformations are one of the fundamental mathematical tools of robotics. One of the most common
applications of coordinate transformations is the forward kinematics problem. Given a robotic manipulator, forward
kinematics answers the following question: Given a specified angle for each joint in the manipulator, can we compute
the orientation of a selected link of the manipulator relative to a fixed world coordinate frame or a frame attached
to another point on the robot?

∗Developed by Aaron Bestick, Austin Buchan, Fall 2014. Modified by Victor Shia and Jaime Fisac, Fall 2015; Dexter Scobee and
Oladapo Afolabi, Fall 2016; David Fridovich-Keil and Laura Hallock, Fall 2017. Ravi Pandya, Nandita Iyer, Phillip Wu, and Valmik
Prabhu, Fall 2018

1

http://sdk.rethinkrobotics.com/intera/API_Reference
http://sdk.rethinkrobotics.com/intera/Joint_Position_Example
http://wiki.ros.org/tf2/Tutorials

This lab will explore this question in two parts, which need not be done in order. In Part 1, you’ll use the code you
wrote as part of the prelab to write the forward kinematics map for one of Sawyer’s arm, then you’ll compare your
results against some of ROS’s built-in tools. You’ll also learn a bit more about tf2, a useful package for computing
transforms. In Part 2, you’ll explore Sawyer’s basic joint position control functions, and take a quick look at how
ROS helps you manage the coordinate transformations associated with all of Sawyer’s moving parts.

1 Forward kinematics

As discussed in lecture, the forward kinematics problem involves finding the configuration of a specified link in a
robotic manipulator relative to some other reference frame, given the angles of each of the joints in the manipulator.
In this exercise, you’ll write your own code to compute the forward kinematics map for an example robot’s arm.

Note: These parameters correspond to an old robot named Baxter. They will NOT work on Sawyer.

1.1 Kinematic functions

Assuming you have completed the prelab, you may leverage code that you have already written in kin_func_skeleton.py,
provided both partners can explain the code.

1.2 Set up your workspace

Create a workspace called lab3 in your ~/ros_workspaces directory. Refer to Lab 1 if you need to review how to
do this.

In the src folder inside your lab3 workspace, create a package called forward_kinematics which depends on rospy
and sensor_msgs. Instructions on how to do this are also in Lab 1. Remember to run catkin_make to initialize and
build your workspace and run and source devel/setup.bash so your new workspace is on the $ROS_PACKAGE_PATH.
Our starter code for this lab is on GitHub for you to clone so that you can easily access any updates we make to the
starter code. It can be found at https://github.com/ucb-ee106/106a-fa22-labs-starter.git. You can clone
it by running

git clone https://github.com/ucb-ee106/106a-fa22-labs-starter/tree/main/Lab3

Keep the joint_ctrl folder aside and move the other files into the src folder inside your forward_kinematics

package. We also highly recommend you make a private GitHub repository for each of your labs just in case.

1.3 Writing the forward kinematics map

Writing the forward kinematics map for a serial chain manipulator involves the following steps:

1. Define a reference “zero” configuration for the manipulator at which we’ll say θ = 0, where θ = [θ1, . . . , θn] is
the vector of joint angles for an n-degree-of-freedom manipulator

2. Choose where on the robot to attach the fixed base frame and the moving tool frame

3. Write the coordinate transformation from the base to the tool frame when the manipulator is in the zero
configuration (gst(0))

4. Find the axis of rotation (ωi) for each joint as well as a single point qi on each axis of rotation (all in the base
frame)

5. Write the twist ξi for each joint in the manipulator

6. Write the product of exponentials map for the complete manipulator

7. Multiply the map by the original base-to-tool coordinate transformation to get the new transformation between
the base and tool frames (gst(θ), now as a function of the joint angles)

Task 1: Using the code from the prelab and referring to the textbook (available on bCourses) if necessary, write
a Python function that computes the coordinate transformation between the base and tool frames for the robot arm
pictured below (steps 3-7 above). Your function should take an array of 7 joint angles as its only argument and

2

https://github.com/ucb-ee106/106a-fa22-labs-starter.git

return the 4x4 homogeneous transformation matrix gst(θ). Refer to Figure 1 for the parameters of the example robot
arm. The only other parameter you should need is the rotation matrix

R =

 0.0076 −0.7040 0.7102
0.0001 0.7102 0.7040
−1.0000 −0.0053 0.0055

where

gst(0) =

[
R q
0 1

]
for the appropriate value of q.

Note: Copying the information into Python from the diagram below can take a while, so we have done it for you
in example_forward_kinematics.py.

base
q=[0,0,0]

left_s0

q1=[.0635,.2598,.1188]

ω1=[-.0059,.0113,.9999]

left_s1

q
2
=[.1106,.3116,.3885]

ω
2
=[-.7077,.7065,-.0122]

left_e0

q
3
=[.1827,.3838,.3881]

ω
3
=[.7065,.7077,-.0038]

left_e1

q
4
=[.3682,.5684,.3181]

ω
4
=[-.7077,.7065,-.0122]

left_w0

q
5
=[.4417,.6420,.3177]

ω
5
=[.7065,.7077,-.0038]

left_w1

q
6
=[.6332,.8337,.3067]

ω
6
=[-.7077,.7065,-.0122]

left_w2

q
7
=[.7152,.9158,.3063]

ω
7
=[.7065,.7077,-.0038]

left_hand

q=[.7957,.9965,.3058]

x

y

z

x’

y’

z’

S

T

Figure 1: Example robot arm parameters (Baxter).

1.4 Compare with built-in ROS functionality

Once you think you have your forward kinematics map finished, you’ll compare with with some built-in functions
offered by ROS.

Before we compare our software with built-in ROS functionality, we will need to disconnect from the Sawyer
robot so that it does not publish data and override our recorded messages. We will do this by editing the ./bashrc
file in your main folder. Comment out the line:

#export ROS_MASTER_URI=http://[robot].local:11311

and then close out all terminals.
To view our recorded data, we’ll use a new tool called rosbag, which allows you to record and play back all the

messages published on a set of topics, in order to test pieces of your software. We recorded a set of data from the
example robot while we moved its left arm around. Find the baxter.bag file (from lab3_resources.zip), start in
a separate terminal:

roscore

3

and open a new terminal, then play the file with

rosbag play baxter.bag

Notice how you can pause playback with the space bar and view the published messages with the usual tools like
rostopic list and rostopic echo. You can add the flag -l in order to allow the rosbag file to play in a loop.

Try rostopic echo-ing the robot/joint_states topic, which gives the current joint angles of all joints in the
example robot’s left and right arms, as well as those of the head and torso. Using knowledge from rostopic echo,
you can figure out what joint angles correspond to example robot’s left arm. (Hint: names starting with ’left ’
correspond to the left arm.)

Next, try running the command

rosrun tf tf_echo base left_hand

while the bag file is playing. Any ideas about the data that’s displayed?
Task 2: Write a subscriber node forward_kinematics.py that receives the messages from the robot/joint_states

topic, plugs the appropriate joint angles from each message into your forward kinematics map from the last task,
and displays the resulting transformation matrix on the terminal. Display this in another window alongside the tf

data discussed above. Do you notice any similarities? What do you think the “RPY” portion of the tf message is?
Hint: You will need to edit the second function of example_forward_kinematics.py.

1.5 Writing a tf Listener

tf is more than just a command line utility. It’s a powerful set of libraries that you can use to find transforms
between different frames on your robot. You’ll be writing a listener node using tf2, which is the newer, supported
version of tf. The tf2 package is ROS independent, so you need to import tf2_ros, which contain ROS bindings
of the various tf2 functionalities. You can import it in your code with the following line:

import tf2_ros

A Buffer is the core of tf2 and stores a buffer of previous transforms. To create an instance of a Buffer use the
following line:

tfBuffer = tf2_ros.Buffer()

A TransformListener subscribes to the tf topic and maintains the tf graph inside the Buffer. To create an
instance of TransformListener use the following:

tfListener = tf2_ros.TransformListener(tfBuffer)

The function tfBuffer.lookup_transform(...) looks up the transform of the target frame in the source frame.
The output is of type geometry_msgs/TransformStamped (documentation for this type can be found here).

trans = tfBuffer.lookup_transform(target_frame, source_frame, rospy.Time())

Here are some tf exceptions you might want to catch:

tf2_ros.LookupException

tf2_ros.ConnectivityException

tf2_ros.ExtrapolationException

To catch an exception in Python you can create a try/except block (you might know this format as a try/catch
block in most other programming languages). You should consider making a try/except block when using functions
such as lookup_transform since exceptions can occur often and will crash your program when encountered. With
a try/except block, your node will be able to handle exceptions and will not shut down if one occurs. You can write
one with the following format:

4

http://docs.ros.org/melodic/api/geometry_msgs/html/msg/TransformStamped.html

try:

<code to execute>

except (<exception>, <exception>, . . .):

<code to execute if an exception occurs>

Task 3: Write a tf listener node tf_echo.py that duplicates the functionality of the tf_echo command line
utility. Like the tf_echo command, your node should also take in a target frame and a source frame as command
line arguments (the Python library sys might be helpful to look at). Please also note that you shouldn’t need
to create a subscriber for your node (Why do you think this is?). Display your node’s output in another window
alongside the tf data discussed above and ensure that the outputs are the same. Note: you do not have to format
your output the same way, but the position and orientation should be the same.

5

Checkpoint 1

Submit a checkoff request at https://tinyurl.com/fa22-106alab. At this point you should be able to:

• Explain how you constructed your forward kinematics function

• Explain the functionality of your forward_kinematics node and demonstrate how it works

• Demonstrate that your forward_kinematics node and tf produce the same output

• Demonstrate that your tf_echo node and tf produce the same output

6

https://tinyurl.com/fa22-106alab

2 Make Sawyer move

Important: For this section, make sure that you connect back to Sawyer by uncommenting the line:

export ROS_MASTER_URI=http://[robot].local:11311

in your ./bashrc file.
In this section, you’ll explore some of Sawyer’s basic position control functionality. Close all running ROS nodes

and terminals from the previous part, including the one running roscore, before you begin. Additionally, ensure
that you have been trained by the course instructors in the proper safety procedures (including use
of the e-stop button) and etiquette for running Sawyer.

To create your workspace, make a folder called lab3_sawyer with a subfolder src in your ros_workspaces folder.
From within the new src, run catkin_init_workspace, then from within lab3_sawyer, run catkin_make.

To set up your environment, make a shortcut (symbolic link) to the Sawyer environment script
/opt/ros/eecsbot_ws/intera.sh using the command

ln -s /opt/ros/eecsbot_ws/intera.sh ~/ros_workspaces/lab3_sawyer/

Use the following line to ssh into one of the Sawyer robots:

./intera.sh [name-of-robot].local

(where [name-of-robot] is either azula, alice, amir, ada, or alan) in your folder to set up your environment for
interacting with Sawyer, then run source devel/setup.bash so your new workspace is on the $ROS_PACKAGE_PATH.

Sawyer has the interface package intera_interface. Don’t forget to check that you have this package imported!
There is an important detail: Sawyer only has one arm! This means that whenever you try to move an arm on
Sawyer, it must be the right one.

Move the joint_ctrl folder into the src folder. Build and source in the home directory of your lab3 workspace
as appropriate. Run the joint_position_keyboard.py script for an example of how to move the Sawyer arm. Note
that you don’t need to start roscore — it’s already running on the Sawyer robot itself.

Instead of publishing directly to a topic to control Sawyer’s arm (as with turtlesim), the respective SDKs provide
a library of functions that take care of the publishing and subscribing for you.

Task 4: Create a new node (python file) in the src folder of joint_ctrl in your lab3_sawyer workspace.
What dependencies will be needed? (Hint: Include intera_examples as a dependency.) Start by making a copy
of the joint_position_keyboard.py file and give it a new name. Edit your copy so that instead of captur-
ing keypresses, it prompts the user for a list of seven joint angles, then moves to the specified position. (Hint:
You might have to call limb.set_joint_positions() repeatedly at some interval, say, 10ms, while the robot is
in the process of moving to the new position.) The set_joint_positions() function takes a single argument,
which should be a Python dictionary object mapping the names of each joint to the desired joint angles (e.g.,
{‘left_s0’: 0.0, ‘left_s1’: 0.53, ..., ‘left_w2’:1.20}). Dictionaries are used as follows:

Create an empty dictionary

test_dict = {}

Add values to the dictionary

test_dict[‘key1’] = ‘value1’

test_dict[‘a_number’] = 1.024

Read values from the dictionary

print(test_dict[‘key1’])

print(test_dict[‘a_number’])

Output:

value1

1.024

You can also create a dictionary with a literal expression

test_dict2 = {‘key1’: ‘value1’, ‘a_number’: 1.024}

7

Test your code with several different combinations of joint angles and observe the results. Once you get your
code to work, run the command

rosrun tf tf_echo base right_hand

as appropriate and observe the output as you move the robot around. Any ideas what the data represents?
Finally, run

export ROS_MASTER_URI=http://[name-of-robot].local:11311

rosrun rviz rviz

for the appropriate value of [name-of-robot], as before. The first line above tells RViz to connect to the remote
master running on the robot.

Once RViz loads, ensure that Displays > Global Options > Fixed Frame is set to world. Next, click the Add
button and add a RobotModel object to the window so you can see the robot move. Any thoughts as to where RViz
gets the data on the robot’s position?

Next, add two copies of the Axes object to the display. In the Displays pane of the left side of the screen, set
the Reference Frame of one Axes object to /base and the other to /right_hand. You should see both sets of axes
displayed on Sawyer. What do you think the axes represent?

Finally, remove both Axes objects and add a single TF object to the display. What happens?

Checkpoint 2

Submit a checkoff request at https://tinyurl.com/fa22-106alab. At this point you should be able to:

• Demonstrate the code you wrote to set Sawyer’s joint positions

• Use RViz to display the different state and sensor data topics published by Sawyer

• Explain what the Axes and TF displays in RViz represent

8

https://tinyurl.com/fa22-106alab

	Forward kinematics
	Kinematic functions
	Set up your workspace
	Writing the forward kinematics map
	Compare with built-in ROS functionality
	Writing a tf Listener

	Make Sawyer move

