
Lab 1: Introduction to Robot Operating System (ROS) ∗

EECS/ME/BIOE C106A/206A Fall 2022

Goals

By the end of this lab you should be able to:

• Set up a new ROS environment, including creating a new workspace and creating a package with the appropriate
dependencies specified

• Use the catkin tool to build the packages contained in a ROS workspace

• Run nodes using rosrun

• Use ROS’s built-in tools to examine the topics and services used by a given node

If you get stuck at any point in the lab you may submit a help request during your lab section at tinyurl.com/106alab.

Note: Much of this lab is borrowed from the official ROS tutorials. We picked out the material you will find most
useful in this class, but feel free to explore other resources if you are interested in learning more.

Contents

1 What is ROS? 2
1.1 Computation graph . 2
1.2 File system . 3

2 Initial configuration 3

3 Navigating the ROS file system 4
3.1 Anatomy of a package . 4
3.2 File system tools . 5

4 Creating ROS Workspaces and Packages 6
4.1 Creating a workspace . 6
4.2 Creating a new package . 6
4.3 Building a package . 7

5 Understanding ROS nodes 8
5.1 Running roscore . 8
5.2 Running turtlesim . 8

6 Understanding ROS topics 8
6.1 Using rqt graph . 9
6.2 Using rostopic . 9

∗Minor edits for new protocols in Fall 2022 by Emma Stephan, and in Fall 2021 by Josephine Koe and Jaeyun Stella Seo. Developed
by Aaron Bestick and Austin Buchan, Fall 2014.

1

https://tinyurl.com/106alab
http://www.ros.org/wiki/ROS/Tutorials

7 Understanding ROS services 10
7.1 Using rosservice . 10
7.2 Calling services . 10

8 Lab Checkoffs on Gradescope 11

9 Additional Lab Etiquette 11

1 What is ROS?

The ROS website says:

ROS is an open-source, meta-operating system for your robot. It provides the services you would ex-
pect from an operating system, including hardware abstraction, low-level device control, implementation
of commonly-used functionality, message-passing between processes, and package management. It also
provides tools and libraries for obtaining, building, writing, and running code across multiple computers.

The ROS runtime “graph” is a peer-to-peer network of processes that are loosely coupled using the ROS
communication infrastructure. ROS implements several different styles of communication, including syn-
chronous RPC-style communication over services, asynchronous streaming of data over topics, and storage
of data on a Parameter Server.

This isn’t terribly enlightening to a new user, so we’ll simplify a little bit. For the purposes of this class, we’ll be
concerned with two big pieces of ROS’s functionality: the computation graph and the file system.

1.1 Computation graph

Figure 1: Example computation graph.

A typical robotic system has numerous sensing, actuation, and computing components. Consider a two-joint manipu-
lator arm for a pick-and-place task. This system might have:

• Two motors, each connected to a revolute joint

• A motorized gripper on the end of the arm

• A stationary camera that observes the robot’s workspace

• An infrared distance sensor next to the gripper on the manipulator arm

To pick up an object on a table, the robot might first use the camera to measure the position of the object, then
command the arm to move toward the object’s position. As the arm nears the object, the robot could use the IR
distance sensor to detect when the object is properly positioned in the gripper, at which point it will command the
gripper to close around the object. Given this sequence of tasks, how should we structure the robot’s control software?

A useful abstraction for many robotic systems is to divide the control software into various low-level, independent
control loops that each manage a single task on the robot, then couple these low level loops together with higher-level
logic. In our example system above, we might divide the control software into:

2

• Two control loops (one for each joint) that, given a position or velocity command, control the power applied to
the joint motor based on position sensor measurements at the joint

• Another control loop that receives commands to open or close the gripper, then switches the gripper motor on
and off while controlling the power applied to it to avoid crushing objects

• A sensing loop that reads individual images from the camera at 30 Hz

• A sensing loop that reads the output of the IR distance sensor at 100 Hz

• A single high-level module that performs the supervisory control of the whole system

Given this structure for the robot’s software, the control flow for the pick-and-place task could be the following: The
high-level supervisor queries the camera sensing loop for a single image. It uses a vision algorithm to compute the
location of the object to grasp, then computes the joint angles necessary to move the manipulator arm to this location
and sends position commands to each of the joint control loops telling them to move to this position. As the arm
nears the target, the supervisor queries the IR sensor loop for the distance to the object at a rate of 5 Hz and issues
several more fine motion commands to the joint control loops to position the arm correctly. Finally, the supervisor
signals the gripper control loop to close the gripper.

An important feature of this design is that the supervisor need not know the implementation details of any of the
low-level control loops. It interacts with each only through simple control messages. This encapsulation of functional-
ity within each individual control loop makes the system modular, and makes it easier to reuse the same code across
many robotic platforms.

The ROS computation graph lets us build this style of software easily. In ROS, each individual control loop is a node
within the computation graph. A node is simply an executable file that performs some task. Nodes exchange control
messages, sensor readings, and other data by publishing or subscribing to topics or by sending requests to services
offered by other nodes (these concepts will be discussed in detail later in the lab).

Nodes can be written in a variety of languages, including Python and C++, and ROS transparently handles the details
of converting between different datatypes, exchanging messages between nodes, etc.

1.2 File system

As you might imagine, large software systems written using this model can become quite complex (nodes written in
different languages, nodes that depend on third-party libraries and drivers, nodes that depend on other nodes, etc.).
To help with this situation, ROS provides a system for organizing your ROS code into logical units and managing
dependencies between these units. Specifically, ROS code is contained in packages. ROS provides a collection of tools
to manage packages that will be discussed in more detail in the following sections.

2 Initial configuration

The lab machines you’re using already have ROS and the Sawyer robot SDK installed, but you’ll need to perform a
few user-specific configuration tasks the first time you log in with your class account.
Open the .bashrc file, located in your home directory (denoted “ ~ ”), in a text editor. (If you don’t have a
preferred editor, we recommend Sublime Text, which is preinstalled on lab computers and can be accessed using
subl <filename>.) Follow the instructions in the example below in your .bashrc file. If your .bashrc file does not
already have the important lines mentioned below, append the necessary lines from the example bashrc link below to
your own .bashrc file.
You can see an example of what the bashrc will look like on a lab computer by examining this file.

Save and close the file when you’re done editing, then execute the command

source ~/.bashrc

to update your environment with the new settings.

3

https://www.sublimetext.com/
https://drive.google.com/file/d/180c8mE_3gpZDEGMFxjib5YhV3q_tug2f/view

The “source /opt/ros/eecsbot_ws/devel/setup.bash” line does two things. Firstly, it tells Ubuntu to run a ROS-
specific configuration script every time you open a new terminal window. This script sets several environment variables
that tell the system where the ROS installation is located. Secondly, it edits the $ROS_PACKAGE_PATH environment
variable.

This variable is particularly important, as it tells ROS which directories to search for software packages. Any code
you want to run with ROS must be located beneath one of the directories specified in the list. By default, ROS’s
setup.bash file adds the directories for all of ROS’s built-in packages to the package path. However, the Sawyer SDK
contains additional packages that we want to be able to run, so we must add its directory to the package path as well.
The SDK is located in the /opt/ros directory.

The “source /opt/ros/noetic/setup.bash” line sets all the path variables to use the ROS built-in packages, but it
does not clutter your workspace with the things associated with the Sawyer SDK.

When you create your own workspaces, you will need to run a workspace specific setup.bash file to ensure that your
packages are located on the ROS path (we will discuss this in more detail in Section 4).

After you source the robots, we must configure the IP addresses of the workstations and the robots so they can com-
municate with each other. The ROS_HOSTNAME should be set to the IP address of the workstation. This is done for
you.

Additionally, if you are using any of the Turtlebots, you will need to set the $ROS_MASTER_URI to the IP address of
the robot. This variable effectively tells nodes where to look for the master node.

3 Navigating the ROS file system

The basic unit of software organization in ROS is the package. A package can contain executables, source code, libraries,
and other resources. A package.xml file is included in the root directory of each package. The package.xml contains
metadata about the package contents, and most importantly, about which other packages this package depends on.
In prior years, we used to use Baxter and Sawyer robots, but all Baxter robots have now been replaced by Sawyers.
However, for the purposes of this lab and learning about the ROS file system, we will have you explore an example
package formerly within the Baxter robot SDK.

3.1 Anatomy of a package

cd into /opt/ros/eecsbot_ws/src/baxter_examples. The baxter_examples package contains several example nodes
which demonstrate the motion control features of Baxter. The folder contains several items:

• /src - source code for nodes

• package.xml - the package’s configuration and dependencies

• /launch - launch files that start ROS and relevant packages all at once

• /scripts - another folder to store nodes

Other packages might contain some additional items:

• /lib - extra libraries used in the package

• /msg and /srv - message and service definitions which define the protocols nodes use to exchange data

Open the package.xml file with the command subl package.xml. It should look something like this:

<?xml version="1.0"?>

<package>

<name>baxter_examples</name>

<version>1.2.0</version>

<description>

Example programs for Baxter SDK usage.

</description>

4

<maintainer email="rsdk.support@rethinkrobotics.com">

Rethink Robotics Inc.

</maintainer>

<license>BSD</license>

<url type="website">http://sdk.rethinkrobotics.com</url>

<url type="repository">

https://github.com/RethinkRobotics/baxter_examples

</url>

<url type="bugtracker">

https://github.com/RethinkRobotics/baxter_examples/issues

</url>

<author>Rethink Robotics Inc.</author>

<buildtool_depend>catkin</buildtool_depend>

<build_depend>rospy</build_depend>

<build_depend>xacro</build_depend>

<build_depend>actionlib</build_depend>

<build_depend>sensor_msgs</build_depend>

<build_depend>control_msgs</build_depend>

<build_depend>trajectory_msgs</build_depend>

<build_depend>cv_bridge</build_depend>

<build_depend>dynamic_reconfigure</build_depend>

<build_depend>baxter_core_msgs</build_depend>

<build_depend>baxter_interface</build_depend>

<run_depend>rospy</run_depend>

<run_depend>xacro</run_depend>

<run_depend>actionlib</run_depend>

<run_depend>sensor_msgs</run_depend>

<run_depend>control_msgs</run_depend>

<run_depend>trajectory_msgs</run_depend>

<run_depend>cv_bridge</run_depend>

<run_depend>dynamic_reconfigure</run_depend>

<run_depend>baxter_core_msgs</run_depend>

<run_depend>baxter_interface</run_depend>

</package>

Along with some metadata about the package, the package.xml specifies 11 packages on which baxter_examples

depends. The packages with <build_depend> are the packages used during the build phase and the ones with
<run_depend> are used during the run phase. The rospy dependency is important - rospy is the ROS library
that Python nodes use to communicate with other nodes in the computation graph. The corresponding library for
C++ nodes is roscpp.

3.2 File system tools

ROS provides a collection of tools to create, edit, and manage packages. One of the most useful is rospack, which
returns information about a specific package. In a new terminal, try running the command

rospack find baxter_examples

which should return the same directory you looked at earlier.

Note: To get info on the options and functionality of many ROS command line utilities, run the utility plus “help”
(e.g., just run “rospack help”).

5

Next, let’s test out a couple more convenient commands for working with packages. Run

rosls baxter_examples

and then

roscd baxter_examples

The function of these commands should become apparent quickly. Any ideas what they do?

4 Creating ROS Workspaces and Packages

You’re now ready to create your own ROS package. To do this, we also need to create a catkin workspace. Since all
ROS code must be contained within a package in a workspace, this is something you’ll do frequently.

4.1 Creating a workspace

A workspace is a collection of packages that are built together. ROS uses the catkin tool to build all code in a
workspace, and do some bookkeeping to easily run code in packages. Each time you start a new project (i.e. lab or
final project) you will want to create and initialize a new catkin workspace.

For this lab, begin by creating a directory for the workspace. Create the directory by running the following command
from your home folder (~):

mkdir -p ros_workspaces/lab1

The directory “ros_workspaces” will eventually contain several lab-specific workspaces (named /lab1, /lab2, etc.)

Next, create a folder src in your new workspace directory (/lab1).

After you fill /src with packages, you can build them by running “catkin_make” from the workspace directory (/lab1
in this case). Try running this command now, just to make sure the build system works. You should notice two new
directories alongside src: build and devel. ROS uses these directories to store information related to building your
packages (in build) as well as automatically generated files, like binary executables and header files (in devel).

Two other useful commands to know are rmdir to remove an empty directory and rm -r to remove a non-empty
directory.

4.2 Creating a new package

You’re now ready to create a package. From the src directory, run

catkin_create_pkg foo

Examine the contents of your newly created package, and open its package.xml file. By default, you will see that the
only dependency created is for the catkin tool itself:

<buildtool_depend>catkin</buildtool_depend>

Next, we’ll try the same command, but we’ll specify a few dependencies for our new package. Return to the src

directory and run the following command:

catkin_create_pkg bar rospy roscpp std_msgs geometry_msgs turtlesim

Examine the package.xml file for the new package and verify that the dependencies have been added. You’re now
ready to add source code, message and service definitions, and other resources to your project.

6

4.3 Building a package

Now imagine you’ve added all your resources to the new package. The last step before you can use the package with
ROS is to build it. This is accomplished with catkin_make. Run the command again from the lab1 directory.

catkin_make

catkin_make builds all the packages and their dependencies in the correct order. If everything worked, catkin_make
should print a bunch of configuration and build information for your new packages “foo” and “bar”, with no errors.

You should also notice that the devel directory contains a script called “setup.bash.” “Sourcing” this script will
prepare your ROS environment for using the packages contained in this workspace (among other functions, it adds
“~/ros_workspaces/lab1/src” to the $ROS_PACKAGE_PATH). Run the commands

echo $ROS_PACKAGE_PATH

source devel/setup.bash

echo $ROS_PACKAGE_PATH

and note the difference between the output of the first and second echo.

Note: Any time that you want to use a non-built-in package, such as one that you have created, you will need to
source the devel/setup.bash file for that package’s workspace.

To summarize what we’ve done, here’s what your directory structure should look like:

ros_workspaces

lab1

build

devel

setup.bash

src

CMakeLists.txt

foo

CMakeLists.txt

package.xml

bar

CMakeLists.txt

package.xml

include

src

Checkpoint 1

Submit a checkoff request at tinyurl.com/106alab for a staff member to come and check off your work. At this point
you should be able to:

• Explain the contents of your ~/.bashrc file

• Explain the contents of your ~/ros workspaces directory

• Demonstrate the use of the catkin make command

• Explain the contents of a package.xml file

• Use ROS’s utility functions to find the path of a package

7

https://tinyurl.com/106alab

5 Understanding ROS nodes

We’re now ready to test out some actual software running on ROS. First, a quick review of some computation graph
concepts:

• Node: an executable that uses ROS to communicate with other nodes

• Message: a ROS datatype used to exchange data between nodes

• Topic: nodes can publish messages to a topic as well as subscribe to a topic to receive messages

Now let’s test out some built-in examples of ROS nodes.

5.1 Running roscore

First, run the command

roscore

This starts a server that all other ROS nodes use to communicate. Leave roscore running and open a second terminal
window (Ctrl+Shift+T (new tab) or Ctrl+Shift+N (new window)).

As with packages, ROS provides a collection of tools we can use to get information about the nodes and topics that
make up the current computation graph. Try running

rosnode list

This tells us that the only node currently running is /rosout, which listens for debugging and error messages published
by other nodes and logs them to a file. We can get more information on the /rosout node by running

rosnode info /rosout

whose output shows that /rosout publishes the /rosout_agg topic, subscribes to the /rosout topic, and offers the
/set_logger_level and /get_loggers services.

The /rosout node isn’t very exciting. Let’s look at some other built-in ROS nodes that have more interesting behavior.

5.2 Running turtlesim

To start additional nodes, we use the rosrun command. The syntax is

rosrun [package_name] [executable_name]

The ROS equivalent of a “hello world” program is turtlesim. To run turtlesim, we first want to start the turtlesim_node
executable, which is located in the turtlesim package, so we open a new terminal window and run

rosrun turtlesim turtlesim_node

A turtlesim window should appear. Repeat the two rosnode commands from above and compare the results. You
should see a new node called /turtlesim that publishes and subscribes to a number of additional topics.

6 Understanding ROS topics

Now we’re ready to make our turtle do something. We need to start a node to take keyboard inputs and tell turtlesim
what to do. Leave the roscore and turtlesim_node windows open from the previous section. In a yet another new
terminal window, use rosrun to start the turtle_teleop_key executable in the turtlesim package:

rosrun turtlesim turtle_teleop_key

You should now be able to drive your turtle around the screen with the arrow keys when in this terminal window.

8

6.1 Using rqt graph

Let’s take a closer look at what’s going on here. We’ll use a tool called rqt_graph to visulize the current computation
graph. Open a new terminal window and run

rosrun rqt_graph rqt_graph

This should produce an illustration like Figure 2. In this example, the turtle_teleop_key node is capturing your
keystrokes and publishing them as control messages on the /turtle1/cmd_vel topic. The /turtlesim node then
subscribes to this same topic to receive the control messages.

Figure 2: Output of rqt plot when running turtlesim.

6.2 Using rostopic

Let’s take a closer look at the /turtle1/cmd_vel topic. We can use the rostopic tool. First, let’s look at individual
messages that /teleop_turtle is publishing to the topic. We will use “rostopic echo” to echo those messages. Open
a new terminal window and run

rostopic echo /turtle1/cmd_vel

Now move the turtle with the arrow keys and observe the messages published on the topic. Return to your rqt_graph
window, and click the refresh button (blue circle arrow icon in the top left corner). You should now see that a second
node (the rostopic node) has subscribed to the /turtle1/cmd_vel topic, as shown in Figure 3.

Figure 3: Output of rqt graph when running turtlesim and viewing a topic using rostopic echo.

While rqt_graph only shows topics with at least one publisher and subscriber, we can view all the topics published
or subscribed to by all nodes by running

rostopic list

9

http://wiki.ros.org/rostopic

For even more information, including the message type used for each topic, we can use the verbose option:

rostopic list -v

Keep the turtlesim running for use in the next section.

7 Understanding ROS services

Services are another method nodes can use to pass data between each other. While topics are typically used to
exchange a continuous stream of data, a service allows one node to request data from another node, and receive a
response. Requests and responses are to services as messages are to topics: that is, they are containers of relevant
information for their associated service or topic.

7.1 Using rosservice

The rosservice tool is analogous to rostopic, but for services rather than topics. We can call

rosservice list

to show all the services offered by currently running nodes.

We can also see what type of data is included in a request/response for a service. Check the service type for the
/clear service by running

rosservice type /clear

This tells us that the service is of type std_srvs/Empty, which means that the service does not require any data as
part of its request, and does not return any data in its response.

7.2 Calling services

Let’s try calling the the /clear service. While this would usually be done programmatically from inside a node, we
can do it manually using the rosservice call command. The syntax is

rosservice call [service] [arguments]

Because the /clear service does not take any input data, we can call it without arguments

rosservice call /clear

If we look back at the turtlesim window, we see that our call has cleared the background.

We can also call services that require arguments. Use rosservice type to find the datatype for the /spawn service.
The query should return turtlesim/Spawn, which tells us that the service is of type Spawn, and that this service type
is defined in the turtlesim package. Use rospack find turtlesim to get the location of the turtlesim package
(hint: you could also use “roscd” to navigate to the turtlesim package), then open the Spawn.srv service definition,
located in the package’s /srv subfolder. The file should look like

float32 x

float32 y

float32 theta

string name

string name

10

This definition tells us that the /spawn service takes four arguments in its request: three decimal numbers giving the
position and orientation of the new turtle, and a single string specifying the new turtle’s name. The second portion of
the definition tells us that the service returns one data item: a string with the new name we specified in the request.

Now let’s call the /spawn service to create a new turtle, specifying the values for each of the four arguments, in order:

rosservice call /spawn 2.0 2.0 1.2 "newturtle"

The service call returns the name of the newly created turtle, and you should see the second turtle appear in the
turtlesim window.

8 Lab Checkoffs on Gradescope

To see your lab checkoff progress for the semester on Gradescope, submit a .txt file with your student ID number to
the Lab Checkoffs (SID) assignment on Gradescope. The autograder for this assignment will be re-run once a week
which will update your lab checkoff progress on Gradescope. The file must be a .txt file and it should only include
your student ID number.

Checkpoint 2

Submit a checkoff request at tinyurl.com/106alab for a staff member to come and check off your work. At this point
you should be able to:

• Explain what a node, topic, and message are

• Drive your turtle around the screen using arrow keys

• Use ROS’s utility functions to view data on topics and messages

• Show that you have submitted a .txt file with your SID to the Lab Checkoffs (SID) assignment on gradescope.

9 Additional Lab Etiquette

Because the lab workstations are shared, we sometimes run into strange bugs. The most common is that someone leaves
a process running when they leave the lab, sometimes by forgetting to log out properly. When the next person uses
the same workstation, ROS can get confused by the additional processes running from the prior user. A particularly
insidious example is leaving a roscore master node running in the background; the next person will not be able to
run a master node with proper communications. To avoid issues like this in the lab, please do the following before
leaving:

• Ctrl+C out of every terminal before closing it. It is critical that you Ctrl+C. Do not Ctrl+Z. Ctrl+Z may
look like it stops your process, but it really only pauses it. The process will continue to run in the background.

• To log out, use the command pkill -u [username]. where [username] is your login credential. This will close
out every process on your account before logging you out.

11

https://tinyurl.com/106alab

	What is ROS?
	Computation graph
	File system

	Initial configuration
	Navigating the ROS file system
	Anatomy of a package
	File system tools

	Creating ROS Workspaces and Packages
	Creating a workspace
	Creating a new package
	Building a package

	Understanding ROS nodes
	Running roscore
	Running turtlesim

	Understanding ROS topics
	Using rqt_graph
	Using rostopic

	Understanding ROS services
	Using rosservice
	Calling services

	Lab Checkoffs on Gradescope
	Additional Lab Etiquette

