Homework 5

EECS/BioE/MechE C106A/206A
Introduction to Robotics

Due: October 11, 2022

Note: This problem set includes programming components. Your deliverables for this
assignment are:

1. A PDF file submitted to the HW5 (pdf) Gradescope assignment with all your work
and solutions to the written problems.

2. The provided python files submitted to the HW5 (code) Gradescope assignment with
your implementation of the programming components.

Theory

image coordinate system
>

>

optical axis Y

principal point (IOa yO)
[]

principal point
optical center &

~
cam
Yeam o~ i
. image plane
~o f
N
~

image plane

Figure 1: Geometry behind a Pinhole Camera

Homogeneous coordinates

In class, we have encountered homogeneous coordinates for 3D points, which work by ap-
pending a 1 to the end of the 3 vector to get a vector in 4D. When writing the coordinates
of a point in the image plane (which is 2 dimensional) we will use 2D homogeneous coordi-
nates. This means we will represent the point x = (u,v) € R? as (u,v,1) in homogeneous
coordinates. Note that the homogeneous representation of a 2D point is a 3D vector.

Image formation

We consider a pinhole model of image formation. See Figure We denote the center of
the perspective projection (the point in which all the rays intersect) as the optical center
or camera center and the line perpendicular to the image plane passing through the optical
center as the optical axis. Additionally, the intersection point of the image plane with the
optical axis is called the principal point.

We always associate a reference frame with each camera as shown. By convention, we center
this reference frame at the optical center, take the X — Y plane of this reference frame to
be parallel to the image plane, and take the Z—axis to be perpendicular to the image plane,
pointing in the direction of viewing. Additionally, there is a 2D reference frame attached to
the image plane, with respect to which the ”image coordinates” of any point are measured.
A discretized version of this reference frame give us the familiar ”pixel coordinates” of any
points (in columns and rows).

The figure shows a point p with spatial coordinates X = (X, Y, Z) in the camera reference
frame, and image coordinates x = (u,v). As we stated above, we will default to representing
image coordinates in homogeneous form as z = (u, v, 1), and usually we will overload this
notation wherever it is obvious if we are using homogeneous or regular coordinates.

The camera parameters (such as the focal length f and others; see Lab 6) are specified in
the form of a 3 x 3 camera matriz K. This matrix K is always invertible. The spatial
coordinates X (in the camera reference frame) and the image (homogeneous) coordinates
x = (u,v,1) of a given point p are related via the K matrix as

1 _
where Z is the Z—coordinate of the point in the camera reference frame. Observe that this
Z —coordinate has a significant geometric meaning. It is the distance from the camera’s
X — Y plane to the point, along the direction of viewing. In other words, it is the "depth”
of the point as seen from the camera. So, we give this depth its own symbol A and move it
to the LHS to get the less unwieldy expression

At =KX (2)

Note that given the depth A, the camera matrix K, and the image coordinates x, the spatial
coordinates X of the point can be recovered by inverting equation . On the other hand,
without knowing the depth, the spatial coordinates X can only be recovered up to a scale
factor. This makes geometric sense, since we can see from figure that any point along
the line conecting the optical center to p gets projected to the same image coordinates as p,
and hence knowing only the image coordinates, we can at best specify a line along which p
must lie.

Problem 1. Two-View Triangulation

Consider two cameras with reference frames {1} and {2} respectively. As always, the refer-
ence frame of each camera is such that the X — Y plane is parallel to the image plane and
the Z-axis points in the direction of viewing.

Assume we know the relative transform g = (R,T) € SE(3). Additionally, assume the
cameras are calibrated and normalized, so that the camera matrix K is the identity.

Both cameras are looking at the same point p in 3D space, which has unknown coordinates
X1 € R® in frame {1} and X, € R? in frame {2}. We observe their image coordinates x;
and xo, written in 2D homogeneous coordinates.

(a) Write down an expression relating x; to X; in terms of an unknown depth A;. Do the
same for camera 2.

(b) Write down an expression for X, in terms of Xj.

(c¢) Find a method for solving for X; in terms of the known quantities R € SO(3),T €
R3, 21, 25. Can you deal with the case when the image measurements 1,z are cor-
rupted by some small (white, zero mean, Gaussian) noise?

Hint: Eliminate X, and X5 from your expressions, and try to find only the unknown
depths N1 and \y. Then, use these depths to recover Xi.

Problem 2. Epipolar Ambiguities and Structure from Motion

Consider a similar set up as in the previous problem, with two calibrated, normalized cam-
eras, where the transform g,1 = (R, T") between them is not known. Recall that for such a
system, we define I/ = TR € R33 to be the essential matriz. The essential matrix imposes
the epipolar constraint, which is that whenever x; and z, are the (homogeneous) image
coordinates of the same point, then they must satisfy

eiExy =0

Such a pair of image points x1,xs that correspond to the same point in 3D space viewed
from two different cameras are called corresponding points. In this problem, we consider the
problem of recovering the relative poses between cameras in a multi-camera setup when we
are given a number of corresponding-point pairs.

It turns out that 8 pairs of corresponding points (xgl), xgl)), e (xgs), :L'gs)) in general position
are enough to compute a candidate essential matrix E. Each such pair gives us an equation
of the form

\T .
257 B2 =0 (3)

where the z’s are all known. We additionally have the constraint that E should be of the
correct form to be written as T'R. i.e. we should be able to write it as the product of a cross
product matrix € s0(3) and a rotation matrix € SO(3). We can then solve this system of
equations for a nonzero 3 x 3 matrix E that satisfies this set of constraints. See chapter 5
from An Invitation to 3D Vision (Ma, Soatto, Kosecka, Sastry) for the full details.

(a) Show that we can only recover F up to a scale factor. In particular, show that if F is
a matrix that satisfies all the required constraints, then so is ¢E for any real number
c.

Remark: We can in fact conclude that this ambiguity can be attributed to an un-
known scale factor on the translation vector T between the two frames. This means
that although we can decompose a computed essential matrix £ into rotational and
translational components (R, f), we can only recover the original translation 7" up to
a scale factor. Typically then, we restrict ourselves to finding a 7" such that ||T'|| = 1.

(b) Say we have a system of 3 cameras with reference frames {1}, {2} and {3} respectively,
and we are able to recover the transforms (R12,T12), (R23,T23) and (ng,Tlg) using
point correspondances, where each Tij has norm 1. So there are unknown, nonzero
scale factors \;; such that the true T;; = /\ijj}j. If we could find the three scalars
A12, A2z, A13 then we would have fully recovered the relative poses between the various
cameras. Show that in this setting, we can only recover the \;;’s up to a single scaling
factor.

(c) Consider the same setup as part (c), but now the translation 7} is known exactly (i.e.
A1z is known). Show that now, all \;;’s can be recovered and the relative poses between
the cameras can be found.

Problem 3. Planar Motion Models

For feature tracking algorithms we often assume that the motion of points in the image
when restricted to a small window can be approximated through different transformations
of varying levels of complexity. These assumptions may only hold for a small window, but
for an appropriate object, there exist motions in 3D space such that these transformations
are accurate over the entire image. In this question, we will determine what those motions
are.

Assume we are only concerned with the motion of image points corrosponding to an object
where all points in the object have the same z—coordinate z, relative to the camera frame
(ie. all world points of interest lie in some plane parralel to the x — y plane which passes

through the point [0 0 ZO}T)

(a) Define h(x) as a function which maps an image point to its new location after the
corresponding world point undergoes a rigid motion. Let’s consider a scenario where we
measure image motion h(x) and we notice that each point on the image corresponding
to our object translates by the same Ax. More concretely, h(x) = z 4+ Az. Prove that

a rigid body motion R = [and T = [a b O}T applied to our object corresponds to
this h(x).

(b) Now let’s consider a scenario where h(x) = Ax + d for image points corresponding to
our object. Prove that a rigid body motion R = Rz(6) with arbitrary T" applied to our
object corrosponds to this motion.

Problem 4. I’'m On Point Cloud Nine

In this problem, we’ll tackle a practical problem in robotics: obstacle detection and avoid-
ance! In this question, we’ll look at the obstacle detection and avoidance problem through
the lens of autonomous driving. Let’s begin!

In this problem, we’ve provided you with a simulation environment that models the motion
of a simple vehicle. Let’s briefly discuss the different files, their purposes within the larger
simulation environment, and the basics of how they work. Note that in this question, we’ll
only ask you to interact with three of these files, so don’t worry about understanding all of
the code - much of it has already been implemented for you!

1.

dynamics.py: This file specifies everything about the motion of the vehicle. It uses
a physics-based model to tell us how the vehicle’s state will change depending on the
inputs we give it.

state_estimation.py: Although the dynamics file tells us everything about how the
vehicle moves, in the real world, we find out information about systems through noisy
sensors. We can use sensors such as motion capture systems, accelerometers, and en-
coders to gain a strong estimate of where our car is located in space. In the real world,
and in our simulation, sensors always have some noise - they will never give us an
exact reading for the state of our vehicle!

In addition to caring about the state of our car, we know that the state of the envi-
ronment is important as welll Our car also has a depth camera that allows it to read
the position of obstacles in the environment.

. trajectory.py: Suppose we want to give our vehicle a goal position that we’d like

it to reach. Is it enough to give it a single position, or is it better to supply it with
a trajectory - a set of positions as a function of time? This class gives some simple
straight-line trajectories between points in N dimensions. All of these trajectories are
differentiable, and have zero start and end velocity for smoothness.

. obstacle.py: This file keeps track of the obstacles in the environment - what their

shape is and where they're located. It also holds ObstacleQueue, an interface between
the physical obstacles and the noisy sensor data about the position of obstacles that’s
read by the depth camera.

controller.py: Given the state of the vehicle, a trajectory we’d like the vehicle to
follow, and an estimate of where the obstacles are in space, how can we figure out
what inputs to send to the vehicle at each point in time? This file defines a set of feed-
back controllers that allow the vehicle to plan around obstacles and track trajectories.
Our vehicle uses a special type of feedback controller called a control barrier function
quadratic program (CBF-QP) to safely avoid the obstacles.

lyapunov _barrier.py This file contains functions known as control barrier functions
and control Lypaunov functions, which are vital to the operation of the obstacle-
avoiding feedback controller.

7. environment.py This file manages the simulation of the vehicle in time. It uses two
concepts - one from the field of numerical analysis and one from control theory - called
Euler integration and Zero Order Hold to simulate the behavior of the vehicle. It also
includes some utilities to analyze the behavior of the vehicle.

8. run_simulation.py This file is the master file that sets up and runs the vehicle sim-
ulation. This is the only file you’ll actually need to run in this question!

Let’s take a closer look at the scenario of this problem. We have an autonomous car that
we’d like to drive to some position in space, but there’s an obstacle in the way!

Above: the car avoids the obstacle and successfully navigates to its goal

To understand where the obstacle is located, the car has a sensor known as a depth cam-
era. This is a sensor that’s rigidly attached to the car. It senses the position of points on
the surfaces of obstacles. Since the depth camera is rigidly attached to the car, all of the
obstacle point positions it detects are specified in the car frame. We call the entire collection
of obstacle points detected by the depth camera a pointcloud.

In this question, we’ll process the pointcloud collected by the depth camera, and turn it from
a collection of points in the car frame to a collection of points that are useful for autonomous
trajectory planning.

Running your code

Before you run your code, make sure you have all of the necessary python libraries installed.
Run the following commands in your command line to ensure you have them all installed:

1.
2.
3.
4.

pip install numpy
pip install matplotlib
pip install scipy

pip install casadi

To run your code, all you need to do is run the file run_simulation.py. Give this a try to see
what the vehicle does before processing the pointcloud! By the end of this problem, your
vehicle will successfully avoid the obstacle.

Questions:

(a) Finding car orientation: To figure out where the obstacle actually is in the spatial

frame, we’ll need to figure out the orientation of our car. However, our car only has
a limited range of sensors! All we know about the car is its 3D position in the world
frame and its 3D velocity in the world frame. How can we use just these two pieces of
information to figure out its orientation?

b Z-Direction comes out of the page

Here’s what we know: the first basis vector of the car frame, x., always points tangent
to the direction of motion. The z-basis vector of the car frame, z. is always parallel to
the z-basis vector of the spatial frame, z,.

Using this information, derive a formula for the rotation matrix from the car frame to
the spatial frame, R,..

Once you have your formula, open the file state_estimation.py and go to the function
get_orient(), on line 62. When completed, this function will return the rotation matrix
of the car.

In this function, you are provided with the car position (carPos) and velocity (carVel)
in the spatial frame as 3 x 1 NumPy arrays. Using this information, complete the
function so it returns the rotation matrix R,.. Note that when you first open the file,

there will be a placeholder value for the rotation matrix - your final answer should
change this placeholder!

Hint: Consider the velocity vector of the vehicle - how can this help us find the first
basis vector of our car frame?

(b) Transforming the pointcloud: Now that we have the orientation of the car, we
wish to transform the pointcloud of obstacle points into the world frame, where we can
use it for path planning and obstacle avoidance.

Go to line 77 of the file obstacle.py, to the function called depth_to_spatial(). This
function takes in a pointcloud called ptMatrix, in the car frame, and returns that
pointcloud transformed into spatial frame.

ptMatrix is a 3 x N NumPy array. Each column of the matrix represents an individual
point sensed by the depth camera in the car frame.

With this information, complete the function so that it returns transformedPoints,
a 3 Xx N NumPy array where each column is the corresponding column of ptMatrix,
transformed into the spatial frame.

This will give us our whole pointcloud in the spatial frame!

Hint: look at the function np.tile(). You can use it to complete this question in a single
line!

(c) K Nearest Neighbors: We almost have everything we need! Our final step is to
restrict the pointcloud to the most important points. Real depth cameras will read up
to 400000 points at once! This is far too many for us to work with at any one time.
Instead of working with such an enormous point cloud, we’ll focus on the set of the K
points in the pointcloud that are closest to the vehicle.

Go to the file state_estimation.py, and scroll down to line 172, where there is a function
called get_knn(). This function takes in an integer K, which is the number of points we
wish to find in our pointcloud. In the first line of this function, we extract the point-
cloud sensed by the vehicle, as seen from the vehicle frame. This variable, “ptcloud,”
is a 3 x N NumPy array, where each column is a point in the pointcloud.

We now want to find the K points in this pointcloud that are closest to the vehicle.
Note that since the pointcloud is already in the vehicle frame, this problem is equiva-
lent to solving for the K points in the pointcloud closest to the zero vector, which is
the position of the vehicle in the vehicle fame. Complete the function so that it returns
closest_K, a 3 x K matrix of the points in the pointcloud closest to the vehicle. Note
that these points should be in the vehicle frame, not the spatial frame.

Your solution to this problem, called the K Nearest Neighbors problem, should just
use NumPy, and no external libraries. Note that at the moment, this function calls
an efficient implementation of the KNN algorithm using the library SciPy. You should
replace this implementation with your own!

These are the only three functions you'll need to implement! Once your car is avoiding the
obstacle after completing all three functions, you're all good to go! Remember, the only file
you need to run is run_simulation.py.

When your implementation is correct, you'll see a trajectory that looks like the following:

Y Position (m)

Position of Car in Space

10 4

4 6
X Position {m)

10

10

