Homework 2

EECS/BioE/MechE C106A /206A
Introduction to Robotics

Due: September 13, 2022

Note: Problems marked [bonus] will be eligible for a (very) small amount of extra credit,
though you cannot receieve more than a full score on the homework as a whole. We encourage
you not to spend exorbitant amounts of time on these questions, and as such, you may
receieve partial credit for attempting them.

Note 2: This problem set includes two programming components. Your deliverables for
this assignment are:

1. A PDF file submitted to the HW2 (pdf) Gradescope assignment with all your work
and solutions to the written problems.

2. The provided kin_func_skeleton.py and hw2.py file submitted to the HW2 (code)
Gradescope assignment with your implementation to the programming components.
Make sure to select both files when submitting your assignment.

Problem 1. Exponential Coordinates for Rotations

Recall that for any rotation matrix R € SO(3), there exists a unit axis vector w € R3, a
corresponding skew symmetric matrix @ € s0(3), and a scalar 6 such that R = ¢“Y. Further
recall the geometric interpretation of exponential coordinates; to write R = e“? is to state
that R implements a rotation about the unit axis w by 6 radians in the positive direction
(according to the right hand rule). (Also, while it is not necessary for this problem, recall that
the exponential is derived from solving a differential equation relating the angular velocity
of a point and the axis: v = ¢ = w x q(t), q(t) = R = e“!qy)

(a) Let w = (w1, ws, w3)T € R® be a unit vector and recall that we define the hat operator

as
0 —Ws W2
W= w3 0 —Ww1 (1)
—W9 w1 0

Note that we denote this operator as either @ or w” interchangeably. Further, we define
the "vee” operator ¥ as the inverse of hat, so that @ = w. "vee” is defined on s0(3)
and returns a 3-vector.

Let 6 € [0, 7] be a scalar. Show that the matrix wf has eigenvalues {0, 0, —if}.
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(b) Let R be the rotation matrix for which (w,#) is a set of exponential coordinates. i.e.
R = ¢, Find the eigenvalues of R.

Hint: Recall the properties of the matrix exponential we introduced in Homework 0.

(c) For what values of the rotation angle # does R have 1 or 2 distinct real eigenvalues?
Can it ever have 3 distinct real eigenvalues?

Hint: Recall Euler’s formula.

(d) Interpret your answer to part (c) geometrically. When R has exactly 1 real eigenvalue,
what is it and what is the corresponding eigenvector?” Why does this make sense
geometrically given that R is a rotation matrix? What about when R has two distinct
real eigenvalues? You should answer this question without ever carrying out a direct
eigenvector computation.

Problem 2. Finding Exponential Coordinates

In each of the following subparts, find the exponential coordinates of the rigid body transform
requested.

(a) Figure shows a cube undergoing two different rigid body transformations from
frame {1} to frame {2}. In both cases, find a set of exponential coordinates for the
rigid body transform that maps the cube from its initial to its final configuration, as
viewed from frame {0}. Do this by first finding the equivalent screw motion.
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(a) A first screw motion. (b) A second screw motion.

Figure 1: A cube undergoing two screw motions.

(b) For a point py € R3, consider a following rigid body motion in which the velocity of
the point is

p(t) =w x (p(t) —q), p(0) = po, (2)



where w = [0,0,1]7 € R3 is the axis of rotation and ¢ = [1,1,1]7 € R? is the center of
the rotation. p(t) is a Coordinate of the point at time ¢ with respect to the frame 0.
This is depicted in Figure (2)). If g(t) € SE(3) is a 4 x 4 matrix such that

(

=] ®

Find a £ = (v,w) € R3 such that ¥ = g(t).

frame {0}
Figure 2: The coordinate of the moving point is p(t). ¢ is [1,1,1]” and w is [0,0, 1]7.

(c) Let g = (R,p) € SE(3), with R = R,(7/2)R.(r), and p = (0,—1/v/2,1/v/2). Find
the exponential coordinates of g.

Hint: Try drawing out the transformation between the initial and final frames after
applying g, and attempt to find an equivalent screw motion. You shouldn’t need to
solve this algebraically.

Problem 3. Implementing Exponential Coordinates

What good is all this theory if we can’t use it for something? In order to see the applications
of the exponential map, we’ll first need to implement a few fundamental equations in code.
Fill in the provided kin _func_skeleton.py file to implement the following formulas using
numpy. Test your implementation with the provided test cases by simply running python
kin func_skeleton.py in the command line. You will need this code to start Lab 3.

(a) The “hat” (-)" operator for rotation axes in 3D.

— Input: 3 x 1 vector, w = [wx,wy,wz]T
— Output: 3 x 3 matrix,
0 —w, wy
—Wy Wy 0



(b) Rotation matrix in 3D as a function of w and 6
— Input: 3 x 1 vector, w = [wx,wy,wz]T and scalar, 6
— Output: 3 x 3 matrix,
~ ~2

5 o w
R(w,0) = e*? = T + —— sin(||w]||d) + T

]

(¢) The "hat” (-)" operator for Twists in 3D.

(1 = cos([|wl|)) ()

T
— Input: 6 x 1 vector, £ = [o7,w?]" = [Ve, Uy, Vs Wy Wy, W]

— Output: 4 x 4 matrix,

0 —w, wy vy
s w v . Wy 0 —Wy Uy
§= [ 0 0 } | —wy wy 0 v, (6)

0 0 0 0

(d) Homogeneous transformation in 3D as a function of twist £ and joint angle 6.
— Input: 6 x 1 vector, & = [UT,wT}T = [V, vy, vz,ww,wy,wz]T and scalar 6

— Output: 4 x 4 matrix,

([ 1 o
0 1 w=0
9(&,0) =t = ¢ (7)
ed leHQ ((1 =€) (Wv) 4+ wwTvh)
w#0
(| O 1
(e) Product of exponentials in 3D.
— Input: n 6D vectors, &1,&s,...,&, and scalars, 61,605,...,60,
— Output:
g(€1,01,6,0,, ... 60, 0,) = 10168202 fnln (8)

Problem 4. Satellite System

Two satellites are circling the Earth as shown in Figure 3] Frames {1} and {2} are rigidly
attached to the satellites in such a way that their Z-axes always point toward the Earth.
Satellite 1 moves at a constant speed vy, while satellite 2 moves at a constant speed v,. To
simplify matters, ignore the rotation of the Earth about its own axis. The fixed frame {0} is
located at the center of the Earth. Figure |3|shows the position of the two satellites at ¢ = 0.
For the following questions, you may leave your answers in terms of the products of known
matrices.



Satellite 2

Figure 3: Two satellites circling the Earth. In both cases, the satellite’s z-axis points directly
into the page (tangent to the orbit).

(a)
(b)

Derive the frame ggo at time ¢ = 0 as a 4 X 4 homogeneous transform matrix.

Derive the frame ggs as a function of ¢ as a 4 x 4 homogeneous transform matrix. Hint:
See if you can determine the time-dependent transform from frame 2’s configuration at
time t to its initial configuration, and then apply part (a)

Derive the frame gog; as a function of ¢t as a 4 x 4 homogeneous transform matrix.
Hint: Does the motion of satellite 1 looks similar to that of satellite 29 How are they
different?

Using your results from part (b) and (c), find g9 as a function of t.

At this point, you may be frustrated with the amount of work it took to explicitly
define the movement of an object undergoing a simple circular motion in 3d space.
Instead of explicitly writing out the 4 x 4 homogenous transform as a function of time,
we can instead note the twist associated with the rigid body motion, a 6 x 1 vector
which can be “hatted” to create exponential coordinates. For this problem, find the
twist & such that the twist takes on the exponential coordinates for motion of satellite
2, or in other words, & satisfies

goa(t) = €% g2 (0)

Hint: You should not have to take any matrix logarithms here. Think about what each
element of & represents.

Similar to the previous part, find the twist & such that & satisfies
goi (t) = g1 (0)

Fill in the corresponding parts of hw2.py to implement your answers to parts (b)-
(e) above. Note that your credit for this problem will be awarded by the autograder
configured to the HW2 (code) assignment on Gradescope.



You can visualize the motion of these frames by running the g_t_vis.py and xi_vis.py
after completing the relevant sections of hw2.py. Note that both g_t_vis.py and
xi_vis.py will only work after filling out kin_func_skeleton.py, and xi_vis.py
needs all parts of hw2.py completed. Use your scroll wheel to zoom camera, ctrl+drag
to rotate camera, and shift+drag to pan camera. This may be useful for verifying your
computations before submitting to Gradescope, and fun to play with as well. What
cool rigid body motions can you come up with?

Problem 5. Bonus: Close Encounters of the SO(Third) Kind

Quadcopter UAVs are one of the most exciting and quickly developing fields in robotics. In
this problem, we’ll explore how rotation matrices are used in their control.

Ra(t), xd(t)

When controlling a quadcopter, we wish to be able to control both the position (z € R3)
and the orientation (R € SO(3)) of the quadcopter. We may acheive this control by using a
feedback control system, something we’ll discuss later in the course!

To design a feedback controller, we must be able to measure the distance between the current
state of our system and the state we’d like it to be at, known as the desired state.

For position, this is simple to define. If we’d like our quadcopter to be at a position x4 € R?,
but it’s currently at a position x € R?, we define the position error as follows:

€y =Tq— X (9)

How might we find the distance between two orientations in space? To do this, we must
define a function that enables us to find the difference between two rotation matrices: the
desired rotation matrix, Ry, and the current rotation matrix of the quadcopter, R. Because
these are matrices, not vectors, subtracting the two won’t tell us the distance between them!
In the paper Geometric Tracking Control of a Quadrotor UAV on SE(3), (a must-read
for anyone enthusiastic about quadrotor control!) Taeyoung Lee et al. used the following
function as a measure of distance between rotation matrices:

U(R, Ry) = %tr[[ — RIR) (10)

This is known as an error function on SO(3). Let’s explore some of its properties, and see
why it’s a good choice for quadrotors.

(a) First, we want to make sure that when we'’re at the correct orientation, there will be
zero error, and that the only time error is zero is when we’re at that orientation.



Prove that the error function W(R, R;) = 0 if and only if R = Ry. Hint: Recall that
to prove an “if and only if” statement, we must show it is true in both directions of
implication.

(b) Before we tackle some more challenging properties of the configuration error function,
we'll need a few more intermediate results.
Prove that for nonzero w € R?, &% = &-® is negative semidefinite, where A : R® — s0(3)
is the hat map. Hint: A matric M € R™" is negative semidefinite if it is symmetric
and T Mz < 0 for all nonzero x € R™.
Remark: If a matrix is negative semidefinite, all of its eigenvalues are less than or
equal to 0. Keep thinking about its eigenvalues for the rest of the problem!

(c) Let Ry = e*% and R = e’ where w € R3,||w|| = 1, and 0, 6; € R. Assume w is fixed
and does not change with time.
Prove that for these rotation matrices, the local extrema of ¥ occur at 6 — 6, = n,
where n is an arbitrary integer. Explain why it intuitively makes sense that the extrema
of the function occur at these angles. Hints: use Rodrigues’ Formula, recall that
tr(A+ B) = tr(A) + tr(B), and think about applying the remark from part (b)!
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Above: The green quadrotor is at the desired angular configuration, while the red
quadrotor is at an angle 6 with respect to the axis of rotation.

(d) Let Rg = €%, R = ¢*?, and w = [0,0,1]. Sketch the error function W(R, R,) as a
function of  — 6, on the domain [0, 27] for these two rotation matrices. Is this function
continuous on this domain? Is it differentiable with respect to 6 — 6; on this domain?



