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1 Overview

This document is meant to be a brief overview of some of the math concepts you will find
useful as you enter EECS/BioE/MechE C106A/206A Introduction to Robotics. This review
is not a substitute for a real linear algebra class. Treat this document as a way of reviewing
important facts and formulas and identifying topics that may be worth revisiting if they feel
rusty.

2 Linear Algebra

2.1 Notation

• Rm×n is the set of matrices with m rows and n columns with entries drawn from the
real numbers.

• Rn is the set of n dimensional vectors. By convention, we treat x ∈ Rn as a column
vector (an n× 1 matrix). When we wish to denote a row vector, we do so by referring
to it as xT , the transpose of a column vector x.

• For A ∈ Rm×n we denote by Aij or aij the entry in the ith row and jth column of A.

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn


• For A ∈ Rm×n we denote by Aij or aij the entry in the ith row and jth column of A.

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn


• For x ∈ Rn we denote by xi the ith entry of vector x. We denote the jth column of A

by aj.

A =

 | | |
a1 a2 · · · an
| | |


and the ith row of A by aTi

2



A =


− aT1 −
− aT2 −

...
− aTm −


2.2 Matrix Multiplication

Here we survey some of the important ways of conceptualizing vector-vector, matrix-vector,
and matrix-matrix products.

The product of two matrices A ∈ Rm×n, B ∈ Rn×p is a matrix C = AB ∈ Rm×p with entries

Cij =
n∑
k=1

AikBkj

For this product to be defined, we need A to have as many columns as B does rows. Note
that from the above formula it is evident that matrix multiplication is not commutative.
Indeed, depending on the dimensions of the two matrices, the product BA may not even be
defined. Even when it is defined, in general AB 6= BA.

The following properties are important to remember:

1. Matrix multiplication is associative: (AB)C = A(BC).

2. Matrix multiplication distributes over addition: A(B + C) = AB + AC

3. Matrix multiplication is in general not commutative. It is possible that AB 6= BA.

2.2.1 Vector-Vector Products

1. Inner Product

For x, y ∈ Rn, we denote the product xTy the inner product or dot product of x and y.

xTy =
n∑
i=1

xiyi

Note the result is a scalar and that this is simply a special case of the matrix multiplication
formula when m = p = 1.

2. Outer Product

As a dual to the inner product, for x, y ∈ Rn we define the outer product of x and y as the
matrix xyT . The result is a matrix with entry xiyj in row i, column j.

2.2.2 Matrix-Vector Products

Given A ∈ Rm×n and x ∈ Rn their product y = Ax is a vector in Rm. There are two ways
to conceptualize this product:
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1. Column-centric Perspective

Let the columns of A be ai. Then the vector y = Ax can be written as

y =

 | | |
a1 a2 · · · an
| | |



x1
x2
...
xn

 = a1x1 + a2x2 + · · ·+ anxn

In other words, y is a linear combination of the columns of A. The coefficients of this
linear combination are the entries of the vector x.

2. Row-centric Perspective

Let the rows of A be aTi . Then the vector y = Ax can be written as

y =


− aT1 −
− aT2 −

...
− aTm −

x =


aT1 x
aT2 x

...
aTmx


In other words, each entry of y is the dot product between x and a row of A.

2.2.3 Matrix-Matrix Products

We return to the multiplication of two general matrices, A ∈ Rm×n, B ∈ Rn×p. There are
once again a few different ways of looking at the product C = AB ∈ Rm×p.

1. Write A in terms of its rows aTi and B in terms of its columns bi. Then we can write
each entry of C as an inner (dot) product

Cij = aTi bj

2. Write A in terms of its columns ai and B in terms of its rows bTj . Then the product
C = AB can be written as the sum of outer products

C =
n∑
i=1

aib
T
i

Note that each element of the above summation is a matrix of shape m×p, and so the
sum makes sense.

3. Write B in terms of its columns bi. Then the ith column of C = AB is the vector Abi.

C = A

 | | |
b1 b2 · · · bp
| | |

 =

 | | |
Ab1 Ab2 · · · Abp
| | |
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This is a very useful interpretation of matrix multiplication that you should be well
aware of. In particular, this means that if we think of A as implementing some mean-
ingful linear operator on vectors, then taking the product AB amounts to operating
on each column of B according to A.

4. Analogously to the above, if we write A in terms of its rows aTi , then the ith row cTi of
C is given by the row vector aTi B.

2.3 The Identity Matrix

The square matrix with ones along the diagonal and zeros elsewhere is called the Identity
Matrix. The n × n identity matrix is notated In. When the dimension is obvious from
context, we drop the subscript and simply write I. Formally, In is the matrix with entries
Ii,j = 1 if i = j and 0 elsewhere.

The identity matrix has the property that for any matrix A for which the following products
make sense, we have IA = A and AI = A. As a transformation, the identity matrix
implements the identity function.

2.4 Transpose

The transpose of a matrix A ∈ Rm×n is denoted AT and is an element of Rn×m, and is
constructed by swapping the rows and columns of A. In particular, if B = AT , then by
definition Bij = Aji.

The transpose admits the following properties:

1. (AT )T = A

2. (A+B)T = AT +BT

3. (AB)T = BTAT . For products of more than 2 matrices, the arguments simply flip
order.

4. (cA)T = cAT for scalar c.

2.5 Determinant

The determinant is a function det : Rn×n → R defined on square matrices. Geometrically,
the determinant of a square matrix A ∈ Rn×n is the volume of the image of the unit square
under the transformation T (x) = Ax. It is a polynomial in the entries of the matrix A, and
is hence a differentiable function in each entry.

The following recursive algorithm for computing the determinant is important to know. It
lets us write the determinant of an n×n matrix in terms of the determinant of (n−1)×(n−1)
matrices, with the base case being that the determinant of a scalar (a ”1 x 1” matrix) is the
scalar itself.
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Let A(i|j) denote the (n− 1)× (n− 1) matrix you get if you remove the i’th row and j’th
column from A. Then pick any row i. The following is a a formula for detA.

det(A) =
n∑
j=1

(−1)i+jAij detA(i|j)

This formula is called the cofactor expansion of the determinant along row i. It is good
to know how to use this formula for the n = 2, 3 cases. For n = 2,

det

[
a11 a12
a21 a22

]
= a11a22 − a12a21

and for n = 3,

det

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 =
a11a22a33 + a12a23a31 + a13a21a32
−a11a23a32 − a12a21a33 − a13a22a31

The determinant admits the following properties:

1. det(I) = 1.

2. If we multiply a single row by a scalar t, the determinant also gets scaled by t.

3. Swapping any pair or rows or any pair of columns flips the sign of the determinant.

4. det(tA) = tn det(A).

5. det(AB) = det(A) det(B).

6. det(AT ) = det(A).

7. det(A−1) = 1/ det(A)

Note that from property (6) it follows that we can just as easily perform the cofactor expan-
sion along a column rather than a row without changing the formula.

When n = 3, we have the following additional equivalent formulas that compute the deter-
minant in terms of the columns ai of A ∈ R3×3:

det(A) = (a1 × a2) · a3
= (a3 × a1) · a2
= (a2 × a3) · a1

where × is the cross product for 3D vectors and · is the dot product or inner product.
This expression is called the scalar triple product of the vectors a1, a2, a3.
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2.6 Vector Norms

The norm of a vector x ∈ Rn is denoted ||x|| and is a measure of the ”length” of the vector
x. Formally, a function || · || : Rn → R is called a norm if it satisfies the following defining
properties

1. ||x|| ≥ 0 for all x.

2. ||x|| = 0 if and only if x = 0 .

3. ||λx|| = |λ| · ||x|| for all x ∈ Rn and λ ∈ R.

4. [Triangle inequality] ||x+ y|| ≤ ||x||+ ||y|| for all x, y ∈ Rn

The norm of a vector x can also be thought of as the distance of the point x in Euclidean
space from the origin. The most commonly used norm is the Euclidean `2 norm, which is
essentially the familiar ”Pythagorean” notion of distance

||x||2 =
√
x21 + · · ·+ x2n

Where we also have the very useful property that

||x||22 = xTx

We can generalize this notion of distance to the family of p-norms. The `p norm for p ≥ 1
is defined as

||x||p = (xp1 + · · ·xpn)1/p

Special cases that are worth remembering on their own are the `2 norm from above, the
`1 norm

||x||1 = |x1|+ · · ·+ |xn|

and the `∞ norm

||x||∞ = max
i
|xi|

2.7 Linear Transformations

A function T : Rm → Rn is called a linear transformation if it preserves vector addition and
scalar multiplication. In other words, T is a linear transformation if and only if

1. For all x, y ∈ Rm, T (x+ y) = T (x) + T (y)

2. For all x ∈ Rm and c ∈ R, T (cx) = cT (x)

Note that it also follows that T (0) = 0.
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2.7.1 Matrices as Linear Transformations

Given A ∈ Rm×n, it is easy to check that the function T : Rn → Rm defined by T (x) = Ax
is a linear transformation. In fact, the following converse is also true. Let T : Rn → Rm be
any linear map. Then there exists a matrix A ∈ Rm×n such that T (x) = Ax for all x. In
other words, the set of linear maps from Rn to Rm can be identified with the set of m × n
matrices.

Therefore, we can think of matrices as more than just a static array of numbers. Matrices
are dynamic. They acts on vectors. In fact, every matrix is uniquely determined by the
transformation that it implements.

In particular, if b1, ..., bn is the standard basis for Rn, then the matrix A corresponding to
the linear map T is that matrix which has the vector T (bi) for its i’th column. In this way
we can compute the matrix representation of any given linear map T .

2.7.2 Range and Rank

The range of a linear transformation is the set of vectors in its codomain that get mapped
onto by some vector in its domain. It is the image of the domain under the linear transfor-
mation.

range(T ) = {v ∈ Rm such that ∃ u ∈ Rn with v = T (u)}
The range of a linear transformation is a vector subspace of its co-domain.

Since we can identify every linear transformation with a matrix and vice versa, we speak
of the range space of a matrix as the range of the linear transformation it represents.
Since we saw earlier that the matrix-vector product T (x) = Ax amounts to taking a linear
combination of the columns of A with coefficients from the vector x, it follows that the range
space of A is the span of the columns of A.

The range space of A is denoted R(A).

The dimension of the range space of a matrix is called the rank of the matrix. It is equal
to the size of the largest subset of the columns of A that is linearly independent. With some
abuse of terminology, we also call this the number of linearly independent columns of A.

We say that A has full column rank when it has linearly independent columns. Likewise,
we say it has full row rank when it has linearly independent rows. It can be proven
(though we do not do so here) that the row rank and column rank of any matrix are
the same.

The rank of a matrix admits the following properties:

1. A ∈ Rm×n has rank(A) ≤ min(m,n). When equality is achieved, A is full rank.

2. rank(A) = rank(AT )

3. rank(AB) ≤ min(rank(A), rank(B))

4. rank(A+B) ≤ rank(A) + rank(B)
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2.7.3 Nullspace and Nullity

The nullspace of a matrix A is the set of vectors that get mapped to zero by T (x) = Ax.
It is a vector space, and is denoted N (A). The dimension of this space for a matrix A is
called the nullity of A.

2.7.4 Rank-Nullity Theorem

As it turns out, there is a trade-off between the rank and the nullity of a matrix. In particular,
for A ∈ Rm×n, the following holds:

dim(R(A)) + dim(N (A)) = n

This fact illustrates that, as vector spaces, the “larger” the range of a matrix, the
“smaller” its nullspace will be, and vice-versa. This further illustrates that if A is full
column rank, its nullspace is 0 dimensional, and so its only element is the zero vector. When
this is the case, we say that A has a trivial nullspace.

2.7.5 Inverse

A linear transformation T : Rn → Rn can be represented by a square matrix A ∈ Rn.

T is a bijection if and only if A is full rank.

To see this, assume that A is not full rank. Then by the rank-nullity theorem, there are
nonzero vectors in its nullspace. If we are given a y and have some x such that T (x) = y,
we can construct x′ = x+ v for any v in the nullspace of A and we will get a new vector x′

such that T (x′) = y, and so T cannot be bijective. On the other hand if A is full rank, then
columns are linearly independent and form a basis for its range. Since the columns are n
linearly independent vectors in Rn, they must form a basis for all of Rn. Moreover, we know
that every element in the range of A can be written as a linear combination of its columns.
Since the columns are linearly independent, this linear combination is unique. So, T is both
surjective and injective, and hence bijective.

When T is bijective, its inverse map T−1 exists and is also a linear map. The matrix
associated with T−1 is denoted called A−1 and is referred to as the inverse matrix or simply
inverse of A. It is the unique matrix that satisfies

AA−1 = A−1A = I

The inverse admits the following properties

1. (A−1)−1 = A

2. (AB)−1 = B−1A−1

3. (A−1)T = (AT )−1

Invertible Matrix Theorem: The following statements are equivalent.
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1. A is invertible.

2. A−1 exists.

3. A has a trivial nullspace. i.e. the equation Ax = 0 has the unique solution x = 0.

4. A is full rank.

5. The equation Ax = b has exactly one solution for each b, which is given by x = A−1b.

6. The columns of A form a basis for Rn.

7. detA 6= 0.

2.7.6 Change of Basis

A basis B = {b1, ..., bn} for Rn is a set of n linearly independent vectors that together span
Rn. i.e. any vector can be expressed as a unique linear combination of the vectors in B.
When we write v =

∑
aibi for scalar coefficients ai, we say that (a1, ..., an)T are coordinates

of v written in the basis B.
The standard basis for Rn is the one where we set bi to be the vector with a 1 in the ith entry
and 0 elsewhere.

Whenever we write the coordinates of a vector as an n-tuple of scalars v = (x1, ..., xn)T ,
implicit there is a choice of basis with respect to which these coordinates are given. All
vectors are written with respect to that basis. It is easy to see that the coordinates of the
basis vectors written with respect to themselves are exactly those of the standard basis.

Change of basis for vectors

Now let’s say we wish to express a vector v whose coordinates va = (α1, ..., αn)T are given
in a basis A = {u1, ..., un}, in a new basis B = {w1, ..., w2}. We seek a set of coordinates
vb = (β1, ..., βn)T such that

α1u1 + · · ·αnun = β1w1 + · · · βnwn
Stack the vectors {u1, ..., un} into the columns of a matrix A, and likewise do the same

for B to get a matrix B. Then we can re-write the above equation in matrix form. We seek
a set of coordinates vb such that

Ava = Bvb

Since A,B both have independent columns, we can write

vb = B−1Ava

If v was originally given in the standard basis, then we would simply have

vb = B−1va
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B−1 is called the change of basis matrix for B, since it implements the linear transforma-
tion of mapping the coordinates of a vector in the standard basis to its coordinates in the
basis B. Note that in the expression vb = B−1Ava, we simply transform va into the standard
basis first using A and then transform the resulting vector to B using B−1.

Change of basis for matrices

Now suppose we have a square matrix A which acts on and outputs vectors written in the
standard basis, and we seek a matrix A′ that performs the same transformation as A, but
which does so on vectors written in the basis B′ instead. We can do this as follows. Our
simple approach will be to consider the linear transformation T (x) = Ax.

T expects inputs to be given in the standard basis, and outputs vectors in the standard basis
as well. We seek a transformation T ′ which instead acts on and outputs vectors written in
B. So to implement T ′ we will simply transform the input point into the standard basis,
pass the resulting vector through T, and then transform the result back into B. This gives
us

T ′(x) = B−1T (Bx)

where we recall that x is the coordinate of a vector written in basis B. It is then easily
seen that the matrix corresponding to T ′ is

A′ = B−1AB

Note that the same procedure can be used to find the matrix when the input and output
spaces are required to be written in different bases. We simply need to use different basis
change matrices for the two steps of the construction.

2.8 Eigenvalues and Eigenvectors

Given a square matrix A ∈ Rn×n we say a scalar λ ∈ C is an eigenvalue with corresponding
eigenvector v ∈ Cn if

Av = λv

Geometrically, an eigenvector is a vector on which the effect of A is a simple scaling. To
find eigenvalues, we rearrange the above equation a bit and note that it is equivalent to

(A− λI)v = 0.

The above equation can only hold for nonzero v if (A− λI) has a non-trivial nullspace.
Therefore, eigenvalues of A are exactly those scalars λ that make the matrix (A − λI) (or
equivalently, λI − A), non-invertible. Recall that this is equivalent to saying that det(λI −
A) = 0.

The scalar function

pA(λ) = det(λI − A)
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is a degree n polynomial in λ and is called the characteristic polynomial of A. The
eigenvalues of A, then, are exactly the roots of this polynomial.

Once an eigenvalue λ is found as a root of the characteristic polynomial, the corresponding
eigenvector(s) can be found by solving for v in (A− λI)v = 0.

2.8.1 Eigenspaces

Let λ ∈ C be a fixed eigenvector of A. There are, in general, infinitely many eigenvectors
corresponding to λ, since if v is an eigenvector, it is easy to see that any scalar multiple cv is
also an eigenvector. When this is the only ambiguity, we generally refer to ”the eigenvector”
for eigenvalue λ meaning an eigenvector of unit length.

However, this may not be the only kind of ambiguity in the eigenvector corresponding to λ.
The set of all eigenvectors corresponding to an eigenvalue λ is referred to as Eλ and is, in
general, a vector space. This is easy to see by recognizing that Eλ is the null space of A−λI.

Eλ is called the eigenspace of A corresponding to eigenvalue λ. We can now see that in
fact Eλ could be a space of any dimension at most n, depending on the rank of A− λI. For
instance, the identity matrix I has only one eigenvalue, 1. However, every vector in Rn is an
eigenvector corresponding to this eigenvalue. In this case, E1 is a space of dimension n and
is in fact the whole parent space. In particular, (1, 0, 0), (0, 1, 0), (0, 0, 1) are all eigenvectors
corresponding to the same eigenvalue, but are clearly not scalar multiples of each other.

2.8.2 Diagonalizability

Given the structure of eigenspaces, we in general have a lot of choice when picking eigenvec-
tors for A. In particular, it may be the case that we can pick a set of n linearly independent
eigenvectors. In this case, what we have is a basis for Rn made of eigenvectors of A. When
this is possible, A is said to be diagonalizable because such a basis has the remarkable prop-
erty that A becomes a diagonal matrix when written in this basis. In particular, there exists
a diagonal matrix D such that

D = P−1AP

or equivalently that we can write

A = PDP−1

where P = [v1, ..., vn] is constructed by setting the set of linearly independent eigenvectors
of A as its columns, and D is the diagonal matrix where the i’th diagonal entry is λi, the
eigenvalue corresponding to eigenvector vi.

2.9 Applications

2.9.1 Systems of Linear Equations

A system of n linear equations in n unknown x1, ..., xn can be written as a matrix equation
for some constant matrix A ∈ Rn×n and vector b ∈ Rn. We seek to solve the following

12



equation for x ∈ Rn.

Ax = b

In general, this may have 0, 1, or infinitely many solutions. For a solution to exist, we
require that b be in the range of A. If A is full rank, then it is invertible, and we have a
unique solution x = A−1b. If A is not invertible then there may be zero or infinitely many
solutions depending on whether b is in the range of A.

2.9.2 Linear Least Squares

We often find ourselves concerned with situations where we have more equations than un-
knowns. In such a situation, the matrix A is rectangular, and the system is called overcon-
strained. As such, there may be no solution that satisfies Ax = b exactly, so instead we seek
the ”best” solution, which we define to be the solution that minimizes the squared distance
between Ax and b. To be precise, we seek to solve the following optimization problem.

min
x∈Rn
||Ax− b||22

for A ∈ Rm×n and b ∈ Rm. When A is full column rank, this problem has a unique
solution given by

x∗ = (ATA)−1AT b

This solution is found by taking the gradient of the objective f(x) = ||Ax − b||22 and
setting it to zero. Note that the condition that A have full column rank is necessary for ATA
to be invertible.

2.9.3 Moore-Penrose Pseudo-inverse

Let’s revisit the least squares solution to the overconstrained system Ax = b from the
previous section. Let us define the following operation on full column rank matrices A:

A† = (ATA)−1AT

A† is called the left-pseudoinverse of A. It is a generalization of the matrix inverse to all
full-column rank matrices. It has the property that A†A = I (i.e. it is a left inverse of A).
This psuedo-inverse is unique when it exists, and when A is square, it is equal to the true
inverse A−1.

Comparing this matrix to the least squares solution from the previous section, we see that
A†b also gives us the least squares solution to the system Ax = b.

When A has full row rank instead, we can define a right-pseudoinverse given by

A† = AT (AAT )−1

which satisfies AA† = I.
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