EE106A Discussion 11: Midterm Preparation

Problem 1: Using knowledge of adjoints, prove that the forward kinematics map is the same as composing subsequent rigid body transformations.

t Avoid using adjoints w/FK
Why do we not need the
updated joint positions? $g(t) = e^{\int_{t}^{t} \theta(t)} g_{st}(0)$ Ls θ_1 moves fred ζ_{2}^{\prime} = Ad_o ζ_{1} \mathcal{E}_{2} 3.2 $4(3)$ insforming Result of transforming with $2,$ back to the origin Rotate E $J\cup s$ + $\frac{6}{2}$ Rotate & Cavoid vsing ?" Back \hat{r}_{2} θ_{2} \mathcal{C} Kept
Rotate place \mathcal{E}_1 Restore
q's state $e^{\hat{\vec{\mathcal{A}}}_{1}\theta_{1}}(e^{\hat{\vec{\mathcal{A}}}_{2}\theta_{2}})e^{-\hat{\vec{\mathcal{A}}}_{1}\theta_{1}}$ $\mathbf{1}$

 $g_{st}(0, 0,) = e^{i202 \over 2} e^{i10}$
 $g_{st}(0)$

Gets us to end effector

Position = $\int_{0}^{\frac{\pi}{4}} e^{i\theta} (e^{i\theta}e^{i\theta}) e^{-i\theta} e^{i\theta}$ $\int_{0}^{\frac{\pi}{4}} e^{i\theta}$ $g_{st}(0)$

Problem 2: Prove that the spatial velocity of a manipulator does not depend on the location of the tool frame (as long as it moves with the end-effector).

See Practice midterm Problem 5

Problem 3: Show that a manipulator with 4 revolute joints **at the origin** will necessarily have a singularity.

Problem 4: Calculate the dynamics of the a box with mass m sliding down a ramp of mass M. Assume there is no friction in the system. Then, develop a control law for this motion.

Figure 1: Image sourced from http://www.dzre.com/alex/P441/lectures/lec_18.pdf

3) PE:
$$
V_{g} = -mg x_{2} sin \theta
$$

 $\int_{3 \text{ hvt}} +he top of the ramp$

4)
$$
h = T - V
$$

\n
$$
= T_{M} + T_{m} - V
$$
\n
$$
= \frac{1}{2} M \dot{\tau}_{1}^{2} + \frac{1}{2} m (\dot{\tau}_{1}^{2} + 2 \dot{\tau}_{1} \dot{\tau}_{2} \cos \theta + \dot{\tau}_{2}^{2}) - mg \tau_{2} \sin \theta
$$

5)
$$
Y = \frac{d}{dt} \cdot \frac{dL}{dq} - \frac{dL}{dq}
$$

$$
\frac{dL}{d\dot{x}} = M\dot{x}_1 + m\dot{x}_1 + m\dot{x}_2 \cos\theta
$$

$$
\frac{d}{dt} \left(\frac{dL}{d\dot{x}_1}\right) = M\ddot{x}_1 + m\ddot{x}_1 + m\ddot{x}_2 \cos\theta
$$

$$
\frac{dL}{d\dot{x}_1} = O
$$

$$
\frac{dL}{d\dot{x}_2} = m\dot{x}_1 \cos\theta + m\ddot{x}_2
$$

$$
\frac{\partial}{\partial t} \left(\frac{\partial L}{\partial \dot{x}_1} \right) = m \ddot{x}_1 \cos \theta + m \dot{x}_2
$$

$$
\frac{dL}{d\mu_2} = -mg \sin \Theta
$$

$$
\begin{bmatrix} F_{\tilde{r}_1} \\ F_{\tilde{r}_2} \end{bmatrix} = \begin{bmatrix} M\ddot{r}_1 + m\ddot{r}_1 + m\ddot{r}_2 + m\ddot{r}_2 \cos\theta \\ m\ddot{r}_1 \cos\theta + m\ddot{r}_2 - mgsin\theta \end{bmatrix}
$$

Control $F_{\gamma_1} = (M*m) \ddot{\gamma}_1 + m \ddot{\gamma}_2 \cos \theta$
 $F_{\gamma_2} = m \ddot{\gamma}_1 \cos \theta + m \ddot{\gamma}_2 - mg \sin \theta$ $\begin{array}{c} \downarrow \\ \downarrow \end{array}$ I say in it and in a mercessary to apply in each divection Add feedback F_{π_1} = ($m+m$) π_1^4 + $m\pi_2^4$ coso + $K_P(x_1^4 - x_1)$ + $K_A(x_1^4 - x_1)$ + ...
 F_{π_2} = $m\pi_1$ coso + $m\pi_2$ - $mgsin\theta$ + $K_P(x_2^4 - x_2)$ + ...