EE106A Discussion 11: Midterm Preparation

Problem 1: Using knowledge of adjoints, prove that the forward kinematics map is the same as composing subsequent rigid body transformations. e = (01 (e = 20) e = (01)

Problem 2: Prove that the spatial velocity of a manipulator does not depend on the location of the tool frame (as long as it moves with the end-effector).

Problem 3: Show that a manipulator with 4 revolute joints at the origin will necessarily have a singularity.

singularity.

$$\frac{2}{1}$$
 $\frac{1}{2}$
 \frac

Problem 4: Calculate the dynamics of the a box with mass m sliding down a ramp of mass M. Assume there is no friction in the system. Then, develop a control law for this motion.

Figure 1: Image sourced from http://www.dzre.com/alex/P441/lectures/lec_18.pdf

1)
$$2 = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

2) KE: Ramp $\Rightarrow \frac{1}{2} M \cdot \dot{x}_1^2$

Dbject \Rightarrow Velocities come from \dot{x}_1 and \dot{x}_2

Want to make sure we account for everything but have no overlap

 $\dot{x}_1 = \dot{x}_1 + \chi_2 \cos \theta$
 $\dot{y}_2 = \dot{x}_1 + \chi_2 \cos \theta$
 $\dot{y}_3 = \dot{x}_2 \sin \theta$
 $\dot{x}_4 = \dot{x}_1 + \dot{x}_2 \cos \theta$
 $\dot{x}_5 = \dot{x}_2 \sin \theta$
 $\dot{x}_6 = \dot{x}_2 \sin \theta$
 $\dot{x}_6 = \dot{x}_6 \sin \theta$
 \dot

4)
$$k = T - V$$

= $T_M + T_M - V$
= $\frac{1}{2}M\dot{x}_1^2 + \frac{1}{2}m(\dot{x}_1^2 + 2\dot{x}_1\dot{x}_2\cos\theta + \dot{x}_2^2) - mgx_2\sin\theta$

$$Y = \frac{d}{dt} \cdot \frac{dL}{dq} - \frac{dL}{dq}$$

$$\frac{dL}{d\dot{x}_1} = M\dot{x}_1 + M\dot{x}_2 + M\dot{x}_2 \cos \Theta$$

$$\frac{d}{dt} \left(\frac{dL}{d\dot{x}_1}\right) = M\dot{x}_1 + M\dot{x}_1 + M\dot{x}_2 \cos \Theta$$

$$\frac{dL}{dq} = 0$$

$$\frac{dL}{d\dot{x}_{z}} = m\dot{x}_{1}\cos\theta + m\dot{x}_{z}$$

$$\frac{d}{dt}\left(\frac{dL}{d\dot{x}_{z}}\right) = m\ddot{x}_{1}\cos\theta + m\ddot{x}_{z}$$

$$\frac{dL}{d\dot{x}_{z}} = -mg\sin\theta$$

$$\begin{bmatrix} F_{\chi_1} \\ F_{\chi_2} \end{bmatrix} = \begin{bmatrix} M_{\chi_1}^* + M_{\chi_1}^* + M_{\chi_2}^* \cos \theta \\ M_{\chi_1}^* \cos \theta + M_{\chi_2}^* - mg \sin \theta \end{bmatrix}$$

Control

$$F_{\chi_1} = (m+m) \dot{\chi}_1 + m \dot{\chi}_2 \cos \theta$$

$$F_{\chi_2} = m \ddot{\chi}_1 \cos \theta + m \ddot{\chi}_2 - m g \sin \theta$$

$$\int_{\text{Plug in } \ddot{\chi}_1^d \text{ and } \ddot{\chi}_2^d$$

$$\int_{\text{Get forces necessary to apply in each direction}} \int_{\text{Add feedback}} \int_{\text{Reconstruction}} \int_{\text{Reconstr$$