EE106A Discussion 4: Inverse Kinematics
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1 Inverse kinematics

In forward kinematics, we found the expression for gs () as a function of . Now, in inverse kinematics,
we are given a desired configuration of the tool frame g4, and we wish to find the € for which

e191 8% g.(0) = 9o (0) = ga (1)

2 Padan-Kahan subproblems

To solve the inverse kinematics problem, one technique is to distill it into the following three simpler
subproblems for which we know the solutions.

2.1 Subproblem 1: Rotation about a single axis

Let £ be a zero-pitch twist along w with unit magnitude, and p, ¢ € R3 be two points. Find 6 such
that

ep=gq (2)
e Defineu= (p—r) and v = (q—r) wherer is a
P point on the axis. Find an expression that relates
-u wandv. eu=uv
r af ¢
[
q
(a) (b) e Find expressions for ' and v', the projected u

and v on the plane perpendicular to the rotation
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Figure 1: Subproblem 1: a) Rotate p about the axis 42tS- u'=u—wwiuand v’ = v —wwlv
of & until it is coincident with g. b) Projection of
u and v onto the plane perpendicular to the twist
axis.

e Write the necessary conditions for there to be a solution. w’u = w’v and |[u/|| = |[v'||

e Find the solution for 6 given that it exists. By definition of the cross and dot products respectively,
' x v = wsinf||u/||||v|| and v -v" = cosb]||u'||||v'|]. Given that ||w|| = 1, we multiple both sides of the
cross product equation by w’ and divide the two equations to get that 6 = atan2(w?® (v’ x v'),u -v")




2.2 Subproblem 2: Rotation about two subsequent axes

Let &1 and & be two zero-pitch, unit magnitude twists with intersecting axes, and p, ¢ € R? be two
points. Find #; and 65 such that

6219165292]) =q (3)

Figure 2: Subproblem 2: Rotate p around the axis of £, then around the axis of £; such that the final
location is coincident with gq.

e Geometrically, when does there exist zero, one, or multiple solutions to this subproblem?
When the two circles intersect zero, one, or two times respectively.

Let r be the intersection of the two axes, and ¢ be the intermediate point at which p is rotated about
wa by Os. Define vectors u = (p—7r),v=(¢—r), and z = (¢ —r).

o Write the expression for z in terms of a transformations applied to u and v.

e¥202y = 2 = ¢~ 9101y
Similarly to Subproblem 1, it is true that
whu=wlz (4)
wlv=uwT2 (5
[lull = {2l = []v]] (6)

We can express z as a linear combination of the linearly independent vectors wi, ws, and wy X wa:
2z = awy + Pws + y(wy X wa) (7)

The solutions to these coefficients «, 5, and ~ are found by using the expressions in Egs. 4 to 6 (see
textbook for full details). There are either zero, one, or two real solutions to these coefficients. If a
solution exists, we have z, and hence c.

What’s left is to solve R

22y = ¢ (8)
and .

e G0 =c ©)

which requires us to solve Subproblem 1 twice.



2.3 Subproblem 3: Rotation to a given distance

Let & be a zero-pitch, unit magnitude twist, p, ¢ € R be two points, and § > 0. Find € such that:

llg — e¥p]| = 6 (10)

(a) (b)

Figure 3: Subproblem 3: a) Rotate p about the axis of £ until it is a distance § from point ¢. b)
Projection onto plane perpendicular to axis.

e Geometrically, when does there exist zero, one, or multiple solutions to this subproblem?
When the circle formed by p’s rotation about & intersects the sphere of radius § with center ¢ zero,
one, or two times respectively.

e Write the expressions of the projected u and v onto the plane perpendicular to w, which we call u’
and v'.
v =u—wwluand v =v — wwlv

o Write an expression for the distance §' (the projected 6 onto the plane perpendicular to w) as a
function of u' and v'.

5= HU/ o e@eu/H

e Find the solution for 6. Hint: use result derived in Subproblem 1 to find 6.
Using the same idea as in subproblem 1, we have that

0y = atan2(w” (u' x v'),u - ')

By the law of cosines,
6" = |||+ [[0'||* = 2 |u'[[][v"]|cos (8o — 0)
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3 Using PK subproblems to solve inverse kinematics

We want to simplify complete inverse kinematics problems into the three subproblems we know how
to solve. The full equation becomes more simplified when we apply the kinematics equations to special
points.

In summary, we have the following subproblems that we can use to simplify the inverse kinematics of
a robot with revolute joints:

Subproblem 1: ¢%p = ¢ rotate one point onto another
Subproblem 2: 81918202 = ¢ rotate about two intersecting axes
Subproblem 3: Hegep — qH =4 move one point to a specified distance from another

Solving inverse kinematics is a game of trying to reduce the number of unknowns we need to deal with.
At each step, we will try to leverage the 6;’s that we know, along with specially chosen points on the
manipulator, to reduce the problem to having one or two unknown 6;’s, at which point we can use one
of our subproblems to solve for the remaining variables. Let’s look at some of the tricks we can use to
reduce the number of unknowns we are dealing with.

3.1 Tricks for solving inverse kinematics using PK subproblems

Recall our problem set up. We are given a desired end effector configuration g4 € SE(3), and we need
to find (64, ...,60,) such that

65191 e e&ngngst(o) — gd

It will simplify matters if, whenever possible, we keep all the known matrices on the right hand side
and all the unknown matrices on left hand side. So to begin with, we will re-write the above problem
to leave only the product of exponentials on the left hand side

e R (RS

where we have simply defined g to be the known matrix g4g5;'(0) to simplify notation. As we shall see,
by picking certain points on our twist axes cleverly, we can eliminate variables from this product of
exponentials. We have two primary tricks for this. The first trick will allow us to eliminate exponentials
from the right hand side of the expression €19 ... eén and the second trick will allow us to eliminate
exponentials from the left and side of that expression.

3.1.1 Trick 1: Apply equations to a point on the axes

If we have a revolute twist £ and we have a point p on the twist axis, applying the transformation on
that point does nothing to it, ie:

'p=p (11)
For example, if our IK problem is o
6101 €202 8305 _ g (12)

then choosing a point p on the axis of £ and multiplying both sides of (12) with p yields

egl(’l eEA292€§A393p =gp
— 659165292 (egsesp) =gp

— 6519165292]9 =gp



and this is simply Subproblem 2. In this way, we have managed to eliminate e from our equation,
alAlowing us to solve for 6; and 65 using subproblem 2. Once we know 6; and 65, now the matrices
€191 and €292 are both known, and we can return to finding the rest of the 6;’s.

3.1.2 Trick 2: Subtract a point from both sides and take the norm

Remember that rigid motions preserve norm. For example, say we wish to solve the same IK problem
as in Eq. 12. If the axes of & and &> intersect at a point ¢, we can select a point p that is not on the
axis of £5 and simplify to the following:

§:=lgp — qll = [[e 7% e52%p — g

— (€101 8202 (¢80 — g (13)
= ||e%%p — |

which is just Subproblem 3. In this way, we have eliminated the exponentials 65191,65292 from the left
hand side of the product of exponentials. Once we solve for 63, the matrix e%3% will be known and we
can return to finding the rest of the 6;’s.

3.1.3 Trick 3: Dealing with prismatic joints

The 3 PK subproblems are all only relevant when dealing with revolute joints, as they all describe
scenarios where points are being rotated about axes. So in general, we will not use any predefined
subproblems when dealing with prismatic joints. Rather, we will exploit the structure of the specific
manipulator.

Note: It is usually a good idea to try solving the prismatic joints first.

Often, prismatic joints directly control the distance between some two points p and ¢. This happens
when the vector p — ¢ is parallel to the axis of the prismatic joint. When this is the case, we should
try to reduce the IK problem to the form

a5

where £ is the unit twist corresponding to the prismatic joint. This can usually be done with a
combination of trick 1 (for picking p) and trick 2 (for picking ¢). In this case, 6 is exactly the distance
by which p gets moved, which allows us to find 8 as simply the difference between § and the starting
distance ||p — ¢||, taking care of the sign when necessary.

In other instances, such as the SCARA example from later in this discussion worksheet, the prismatic
joint directly controls one of the coordinates of the end effector. There again, it is easy to compute 6
by inspection by considering that coordinate of the desired configuration.



4 Elbow manipulator example

Break down the inverse kinematics for the elbow manipulator in Fig. 4 into simpler PK subproblems.

Figure 4: Elbow manipulator.

The inverse kinematics problem can be written as

eél 01 65292 65393 6EA494 65595 65696 _ gdgs_tl (0) =g

where we have defined g to be the known matrix g4g,'(0).

Step 1: Eliminate 0,4, 05, 0 using trick 1 and 61, 65 using trick 2. Take ¢,, as a point common to joints
4,5,6 and pp, as a point common to joints 1 and 2. Multiplying by g¢,, gives us

6é191 6529265393654946559565696 =g

— &10 6629265393654946559565505qw = 9Guw
$101 202 €30

— 10158202 .65 3w = 9w

we still have 3 joints, so to use our subproblems we need to eliminate some more variables. We now
subtract off g, to eliminate #; and 65

65161 65202 65393 Guw —4qb = 9qw — Qb
— ’6519185292 (65393(1“7 _ Qb>’ = ngw — qu
— [¢¥%q0 — 0| = llgaw — @

this is exactly the set up for subproblem 3. So we use subproblem 3 to solve for 3. Once we do so, 63
is known and so is the matrix g3 = €%%. The IK problem is now written as

6519165292 g3 - 654946&9565696 =g
Step 2: Solve for 61,60, by eliminating joints 4,5,6. Once again, we pick ¢, and multiply both sides
of the above to get

e171e%2% - g3q,, = gqu



Since g3 is known, this is exactly the set up of subproblem 2 with the intersecting axes of joints 1
and 2 and the known points g3q, and gq,. Use suproblem 2 to solve for 0;,65. Now that both

g1 = 66191,92 = ¢£2% are also known. So we can move g1, 92, gs to the right hand side to get

654946559565696 — g??lg;lgflg = g/

where we have defined ¢’ to be the known matrix g5 ! 9y ! g1 g for convenience.

Step 3: Solve for 04,05 by eliminating 5. Now, we need to pick some point ¢ that is on the axis of
joint 6, but NOT on the axis of either joints 4 or 5 (otherwise they would get eliminated too and we
would not be able to solve for them). We get

6EA494 eésesq _ g/q

which is exactly subproblem 2. So we use that subproblem to solve for 6, and 65. Now the matrices

gy = 65494, gs = €% are also known, so we can move them to the right hand side

1

e = g lgrly =g
where we have defined ¢” to be the known matrix g5 'g; '¢g'.

Step 4: Finally, we can use subproblem 1 to solve for 0. Pick any point p not on the axis of joint 6.
Then we have
efofop = ¢'p

which is subproblem 1. We have now solved for all the 6;’s, and we are done.



5 SCARA manipulator example

Break down the the inverse kinematics for the SCARA manipulator in Fig. 5 into simpler PK sub-
problems.

Figure 5: SCARA manipulator.

The inverse kinematics problem can be written as

6519165292653936&94 — gdg;tl(o) =g

where we have defined g to be the known matrix gqg," (0).

Step 1: We should start off by solving for the prismatic joint, since we do not have subproblems to
handle those. In this case, we can notice that 6, directly controls the z coordinate of the origin of
frame T". So if the z coordinate of g4 is some p., then we require that lo + 64 = p., and so 04 = p. —lo.
Now 64 is known, and so is the matrix g4 = 4%, So we bring this matrix over the right hand side,
and re-write the IK problem as

651916529265393 — gg4*1 — g/

where we have defined ¢’ to be the known matrix 96’5494 for convenience.

Step 2: Next, let’s try to eliminate 3. We can pick point ¢3, as that is on the axis of joint 3. We get

6101 €202 65303613 — g’q3

— 66191 65292(]3 _ g/CI3
This looks a lot like subproblem 2, but careful! It is not a valid instance of subproblem 2, since the
axes of joints 1 and 2 do not intersect! So we are not yet done. Instead, we should also eliminate 6,

by subtracting off a point that is on the axis of joint 1 and then taking the norm. We pick ¢; as that
point. Then we can write

ey — gy =g'qs — @
£50
= [1e2%q3 — 1] = |lg'qs — @l
which is a valid instance of subproblem 3. So we can use subproblem 3 to find 5. Now 65 is known, and
so is the matrix gy = €292, We cannot move this matrix to the RHS just yet because it is sandwiched



between two unkown exponentials, we can keep track of the fact that it is known. The IK problem is
now written as

65191 g - 65393 _ g/

Now we will just solve for 6; and #3 in turn.

Step 3: Solve for ; by eliminating 03. Once again, pick g3 as it is on the axis of joint 3, and multiply
the above equation with it

65191 “go - e{sesqs — g/q3

— ef101. (92a3) = 9'a3
Since g2 is known, this is an instance of subproblem 1 with the known point g2g3 being rotated onto

¢'q3. So we can use subproblem 1 to solve for ;. Now, the matrix g; = 51" is also known, and we
can move both g; and g to the right hand side

1

e = grlgrly =g
where we have defined ¢’ to be the known matrix g5 'g; g’

Step 4: Use subproblem 1 to solve for #3. Pick any point p not on the axis of joint 3. Then multiply
the above with that point to get
eSi%p = g'p

this is a valid instance of subproblem 1, so we can use it to solve for 3. Now all #;’s are known and
we are done.



