
 

A Summary 
 

Rigid body transformations preserve orientation and direction •
They’re affine transformations (Rx + p), rotation then translation •
Points can translate, but vectors simply rotate (since they only represent •
direction) 

 
Homogeneous coordinates can help us represent this movement •

 
 
 
 
 

Now we can represent rigid transformations for both points and vectors •
using a single matrix (convert from affine form to linear form) 

 
 
 
 
 
 
 
 
 

Can stack and invert •
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If we want to parametrize our motion by time, then we can use •
exponential coordinates to generate our transformation matrices 

 
Create rotation matrix: •

 
 
 
 
 
 

Can also create homogeneous transformation matrix •
Use the twist (both linear and angular velocity) •

 
 
 
 

Pure rotation (revolute joint) ◦
 
 
 
 

Pure translation (prismatic joint) ◦
 
 
 
 

Rotation and translation (screw) ◦
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Discussion 2: Exponential Coordinates 

 

Tarun Amarnath 
 
Announcements: 

Homework 2 released! Due on Tuesday •
Much longer than HW 1, start early! ◦
About what to expect for the rest of the semester ◦

Lab 1 this week, Lab 2 next week •
Thursday discussions now in-person because Wi-Fi garbo •

We’ll still post recordings ◦
 

Rigid Body Transformations 1.
 

Length-Preserving •
All points stay the same distance from each other ◦

Orientation-Preserving •
Points don’t switch positions ◦
Same angle relative to each other ◦
If your camera is on the top of your phone, it stays on the top ◦

In other words, a rigid body stays rigid. It’s a solid solid. •
Rotations are rigid body transformations •
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Rigid Transformation of a Point 
 

We can move and rotate a coordinate frame •
Points on that frame move and rotate with it •

 
Ex. Robot arm: flips upside down and moves by 1 unit in the y-direction •

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Affine transformation: f(x) = Mx + b •
M is linear ◦
b is in the space of Y  ◦

 
Rigid Transformation of a Vector 

Just a rotation •
Vectors only have direction, no positional information •
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Homogeneous Coordinates  
 

Can be used with both points and vectors •
4-dimensional array ◦

 
 
 
 

Combine rotation and translation •
 
 
 
 
 

Ex. Flip z-axis and move in the +x direction by 1 unit •
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Composition Rule  
 

Product of 2 rigid body transforms performs both of them •
Go from right to left •
Same as rotation matrices basically, but this also includes translation •

 
 
 
 
 
 
 
 
 
 
 
 
Invertibility  
 

They’re invertible  •
Can go from one place to another and back •
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2. Exponential Coordinates  
 
Matrix Exponential 

Recall from homework 0 some definitions •
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Differential equation •
 
 
 
 
 
 
 
 
 
 

Taylor Series

with a matrix

Takeaway Matrix exponential behaves the

same as normal exponential
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Some exercises •

 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A Check Solutions



 
Motivation 
 

We want to construct a transformation matrix •
Understand how some point moves with coordinate axes •

Ex. Where in the world frame does some point on a robot arm end up ◦
 
 
 
 
 
 

But the thing with robots is that they have continuous motion •
A joint can spin around or move forward and back •

 
 
 
 
 
 
 

Our transformation matrix changes with movement •
This means we need the matrix to be a function of theta (how much the •
arm has moved) 

 
How do we do that? •
We look at how the joint moves (i.e. linear and angular velocities)  •
Then integrate! •

(But this is a DE as we’ll see, so it’s really an exponential ◦
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Exponential Coordinates for Rotation 

Basically, we’re constructing the rotation matrix using this technique  •
(We’ll get to the full homogeneous matrix next) •
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3. Exponential Coordinates for All Rigid Motion 
 
Twists 

Usually we want to find more than just the rotation matrix •
See how position changes too •
We want the full homogeneous transformation •
We can use twists to capture this idea •

Use both linear and angular velocities ◦
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Twist of a Revolute Joint (Rotational Motion) 
Now, let’s make the velocity into a DE in homogeneous coordinates •
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Twist of a Prismatic Joint (Linear Motion) 
 
 
 
 
 
More on Twists 
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It’s a mapping of points from initial coordinates to final coordinates after •
motion with parameter 
Not a mapping between coordinate frames •
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4. Screw Motion 
Any rigid body translation can be simplified •
Instead of having a rotation and then a translation •
Finite rotation about some axis and then translation about that axis  •

Axis l ◦
Magnitude M (like theta) ◦
Pitch h - ratio of translation : rotation ◦

h = 0: pure rotation ‣
h infinite: pure translation ‣

Rotation by M (theta) •
Translation by hM (apply ratio) •
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5. Twists from Screw Motion  

Screws correspond to rotation and translation •
Can convert them into twists •
2 cases: pure translation and nonzero rotation + translation •

 
A) Pure Translation (h infinite) 
 
 
 
 
 
B) Nonzero rotation (h finite) 

Rotation by theta •
Axis w •

Passes through point q ◦
Translation by h   units •

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Exercise: Find the twist for the following revolute joint: 
 
 
 
 
 
 
 
Exercise: Find the twist for this prismatic joint: 
 
 
 
 
 
 
 
Exercise: Find the exponential coordinates for this rigid body transform 
using the equivalent screw motion. 
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tinyurl.com/106a-disc-2


