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Rigid body transformations preserve orientation and direction

They're affine transformations (Rx + p), rotation then translation

e Points can translate, but vectors simply rotate (since they only represent
direction)

¢ Homogeneous coordinates can help us represent this movement
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e Now we can represent rigid transformations for both points and vectors
using a single matrix (convert from affine form to linear form)
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e Can stack and invert
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e |f we want to parametrize our motion by time, then we can use
exponential coordinates to generate our transformation matrices

e Create rotation matrix:
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e Can also create homogeneous transformation matrix
e Use the twist (both linear and angular velocity)
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© Pure rotation (revolute joint)
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o Rotation and translation (screw)
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Discussion 2: Exponential Coordinates

Tarun Amarnath

Announcements:

e Homework 2 released! Due on Tuesday
© Much longer than HW 1, start early!
o About what to expect for the rest of the semester

Lab 1 this week, Lab 2 next week
e Thursday discussions now in-person because Wi-Fi garbo

o We'll still post recordings
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Rigid Body Transformations

e Length-Preserving “P"‘L“ = |l S(P) '&(7)“
o All points stay the same distance from each other
¢ Orientation-Preserving
o Points don’t switch positions 3 (v¢w) 3 G 36 “
© Same angle relative to each other
o If your camera is on the top of your phone, it stays on the top
* In other words, a rigid body stays rigid. It's a solid solid.
* Rotations are rigid body transformations



Rigid Transformation of a Point

e \We can move and rotate a coordinate frame
e Points on that frame move and rotate with it

e Ex. Robot arm: flips upside down and moves by 1 unit in the y-direction
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© b is in the space of Y

Rigid Transformation of a Vector
e Just a rotation
e Vectors only have direction, no positional information
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g(v) =g(s—r)=g(s) —g(r)
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Homogeneous Coordinates

e Can be used with both points and vectors
© 4-dimensional array
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Composition Rule

® Product of 2 rigid body transforms performs both of them
e Go from right to left
e Same as rotation matrices basically, but this also includes translation
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Invertibility

e They're invertible

e Can go from one place to another and back
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2. Exponential Coordinates

Matrix Exponential
¢ Recall from homework 0 some definitions
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e Some exercises

1. By differentiating the series representation, show that if Y () = e* then Y () = AeAt = eAtA.

% Clrache Soluftons

2. By differentiating the function y(t) = e~ 4*z(t), show that z(t) = e?*z( is the unique solution to
& = Az with initial condition z(0) = .
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e \We want to construct a transformation matrix
e Understand how some point moves with coordinate axes

o Ex. Where in the world frame does some point on a robot arm end up
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e But the thing with robots is that they have continuous motion
e A joint can spin around or move forward and back

Our transformation matrix changes with movement
¢ This means we need the matrix to be a function of theta (how much the
arm has moved)

How do we do that?
We look at how the joint moves (i.e. linear and angular velocities)
e Then integrate!

© (But this is a DE as we'll see, so it's really an exponential



Exponential Coordinates for Rotation

e Basically, we're constructing the rotation matrix using this technique

e (We'll get to the full homogeneous matrix next)

Problem 1. Find the rotation matriz R(w,0) for a rotation about some axis w by amount 6. How is
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2.2.1 Exercise (P o « OXO 2 e, )

Find the exponential coordinates of the following rotation matrices:

1. Ry(m/2), the Euler z rotation matrix.

2. Ry(_ﬂ'/2) wov\& x*

3. R :Ry(_ﬂ)
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3. Exponential Coordinates for All Rigid Motion

Twists
e Usually we want to find more than just the rotation matrix
e See how position changes too
e We want the full homogeneous transformation [&3
e We can use twists to capture this idea
© Use both linear and angular velocities
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Problem 2. Write the expressions for the velocity of the point p (ie. p(t)) when attached to both the
revolute and prismatic joints in Fig. 2. Assume that w € R3, ||w|| = 1, and q € R3 is some point along

the azxis of w.
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Figure 2: a) A revolute joint and b) a prismatic joint. v ?/

Twist of a Revolute Joint (Rotational Motion)

e Now, let's make the velocity into a DE in homogeneous coordinates
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Twist of a Prismatic Joint (Linear Motion) o(8) = J

More on Twists b
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3.4 Solution to differential equation gives us the exponential map

Problem 5. Write the general solution to the differential equation p = Eﬁ. Then, make use of the fact
that ||w|| = 1 to reparameterize t to be 0. Specifically, find the expression for p(6) in terms of p(0).
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* It's a mapping of points from initial coordinates to final coordinates after
motion with parameter
e Not a mapping between coordinate frames
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4. Screw Motion

* Any rigid body translation can be simplified
¢ Instead of having a rotation and then a translation
¢ Finite rotation about some axis and then translation about that axis
© Axis |
© Magnitude M (like theta)
o Pitch h - ratio of translation : rotation
> h = 0: pure rotation
> h infinite: pure translation
* Rotation by M (theta)
® Translation by hM (apply ratio)

The transformation g corresponding to S has the following effect on a point p:

gp=q+e‘:’9(p—q)—|—h0w (11)

Problem 6. Convert this transformation to homogeneous coordinates. What do you notice between
this expression and the one in Eq. 107
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5. Twists from Screw Motion

e Screws correspond to rotation and translation
e Can convert them into twists
e 2 cases: pure translation and nonzero rotation + translation

A) Pure Translation (h infinite)

= -6

B) Nonzero rotation (h finite)
e Rotation by theta
* Axis w
© Passes through point g
e Translation by h® units




Exercise: Find the twist for the following re
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Exercise: Find the twist for this prismatic joint:
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Exercise: Find the exponential coordinates for this rigid body transform

using the equivalent screw motion.
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