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1 Frame-specific representations

Points and vectors are described by coordinates that are only meaningful with respect to a corresponding
coordinate frame.

Figure 1: Two coordinate frames A and B

Problem 1. Write the representation of point q with respect to the coordinate frames A and B, which
we denote qa and qb respectively.

qa = [2 3]T , qb = [3 2]T

2 Rotation matrices

Let’s first think solely about the mathematical definition of a rotation matrix before discussing how they
are used in practice. A rotation matrix is a matrix that is defined according to two coordinate frames.

Definition 1. Say we have coordinate frame A, defined by its principal axes {xa,ya, za}, and frame
B, with principal axes {xb,yb, zb}. Then, we define a rotation matrix Rab to be

Rab := [xab yab zab]

where {xab,yab, zab} are orthonormal principal axes of frame B expressed in the coordinates of frame
A.

Problem 2. Find the rotation matrix Rab = [xab yab] for an arbitrary 2D rotation (as depicted in
Fig. 1)

Rab =

[
cosθ −sinθ
sinθ cosθ

]
In general in 3D, we have three elemental rotation matrices that arise from rotations either about the x,
y, or z-axis.

Rx(θ) =

1 0 0
0 cosθ −sinθ
0 sinθ cosθ

 ; Ry(θ) =

 cosθ 0 sinθ
0 1 0

−sinθ 0 cosθ


Problem 3. Work out what Rz(θ) is.

Rz =

cosθ −sinθ 0
sinθ cosθ 0

0 0 1
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3 Uses of rotation matrices

3.1 Representing the orientation of a frame

This follows from the definition of a rotation matrix above. For any pair of coordinate frames A and B,
there exists one unique rotation matrix Rab— thus, Rab tells us exactly how frame B is oriented from
the reference of frame A.

Problem 4. Find the rotation matrix Rba given the same 2D coordinate frames in Fig. 1. What do you
notice about the relationship between Rab and Rba?

Rba =

[
cosθ sinθ
−sinθ cosθ

]
We notice that Rab and Rba are the transpose of each other.
Commutative rule: Say we now have three frames A, B, and C. I tell you what Rbc is, (ie. the
orientation of C from the reference of B), and you’ve already calculated RAB . How can we express Rac,
that is, the orientation of C from the reference of A? We simply combine rotation matrices to form a
new rotation matrix through matrix multiplication:

Rac = RabRbc

3.2 Changing the reference frame

Rotation matrices can also be used to change the reference frame of a point or vector from one frame to
another using the following rule with q being the coordinates of this point or vector:

qa = Rabqb

Problem 5. Find the exact value of θ in Fig. 1.
Plugging in the values for qa and qb and solving the system of equations, we get that θ ' 0.345 rad.

3.3 Transforming a point or vector in a fixed frame

Say you have a point or vector q in frame A that you want to rotate by some θ about an axis ω. If the
entire of coordinate frame A was rotated by exactly this θ about ω, call the resulting orientation frame
B. This induces a rotation matrix Rab, and the transformed q, which we denote by q′, is expressed by:

q′a = Rabqa

Problem 6. Given a point q = (x, y), what are its new coordinates q′ = (x′, y′) after a rotation by a
general θ counter-clockwise about the origin?

x′ = xcosθ − ysinθ

y′ = xsinθ + ycosθ

4 Properties of rotation matrices

1. Columns of R are mutually orthonormal, ie. RRT = RTR = I

2. detR = ±1 (+1 for right-handed frames)
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Figure 2: Illustration of a general rigid transformation between two frames.

5 Rigid body transformations

Definition 2. A mapping g : R3 → R3 is said to be a rigid body transformation if it satisfies the
following properties:

1. Length is preserved: ∀ points p, q ∈ R3, ||p− q|| = ||g(p)− g(q)||

2. The cross product (and therefore orientation) is preserved: ∀ vectors v, w ∈ R3, g(v × w) =
g(v)× g(w)

Problem 7. Complete the mathematical statements for these two properties of rigid body transformations
above.

Proposition. A rotation matrix when applied as an operator via matrix multiplication is a valid rigid
body transformation.

In general, rigid body transformations consist of rotation and translation as is depicted in Fig. 2.

5.1 Rigid transformation of a point

qa = pab +Rabqb

So the rigid transformation g on a point q is

g(q) = p+R(q)

This is an example of an affine transformation.

Definition 3. An affine transformation is a mapping f : X− > Y of the form x− > Mx + b where M
is a linear transformation on the space X and b is a vector in the space Y .

5.2 Rigid transformation of a vector

Given a vector v = s− r, we have the rigid transformation

g(v) = g(s− r) = g(s)− g(r) = R(s− r) = R(v)

so the rigid transformation of a vector consists of just a rotation.
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Figure 3: Roll, pitch, and yaw angles can describe orientation through rotations about the fixed coordi-
nate axes.

6 Homogeneous coordinates

It not the most convenient to represent a rigid transformation by both a rotation matrix and a translation
vector, so we can introduce homogeneous coordinates that helps simplify the representation. We now
represent points with an extra 1 appended, and vectors with a 0 appended. For example, points and
vectors in R3 are transformed to be in R4:

q̄ =


q1
q2
q3
1

 ; v̄ =


v1
v2
v3
0


Now, a rigid transformation can be expressed in a purely linear transformation.

q̄a =

[
qa
1

]
=

[
Rab pab
0 1

] [
qb
1

]
=: ḡabq̄b

ḡ =

[
R p
0 1

]

7 Other representations of rotations

7.1 Axis angle

Any rotation can be expressed as a rotation of θ about a unit axis ω.

7.2 RPY angles

Rotations are described by three angles (roll φ, pitch θ, yaw ψ) about the basis vectors of a fixed
coordinate frames. It involves the following intermediate rotations of a body frame B about a fixed
world frame A, where B and A are initially coincident:

• Rotate A about its x-axis of A by the roll angle φ. Call this new frame B.

• Rotate B about the y-axis of A by the pitch angle θ. Call this updated frame C.

• Rotate C about the z-axis of A by the yaw angle ψ. Call this new and final frame D.

Thus, by the composition of these transformations, the final resultant rotation matrix is

Rad = Rz(ψ)Ry(θ)Rx(φ)

This is an example of extrinsic rotations— ones that are all defined with respect to a fixed frame.
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7.3 Euler angles

Euler angles describe the rotations about the changing basis vectors. For example, these are the rotations
involved in what we call the ZY X Euler angles, here denoted as (α, β, γ). Let frame A be the initial
orientation of the object being rotated.

• Rotate A by α about the z-axis. Call this new frame B.

• Rotate B by its new y-axis by β. Call this new frame C

• Rotate C by its new x-axis by γ. Call this new and final frame D.

The final resultant rotation matrix is derived from the composition of these three intermediate rotations.

Rad = RabRbcRcd = Rz(α)Ry(β)Rx(γ)

This is an example of intrinsic rotations— ones that are all defined with respect to the rotating coordinate
frame.

7.4 Relationship between intrinsic and extrinsic rotations

It turns out that extrinsic rotation is equivalent to an intrinsic rotation by the same angles but with
inverted order of elemental rotations, and vice-versa. Thus, a RPY transformation with roll, pitch, and
yaw angles of (γ, β, α) is equivalent to the ZYX Euler angle rotations of (α, β, γ).

7.5 Quaternions

”Quaternions came from Hamilton after his really good work had been done; and, though beautifully
ingenious, have been an unmixed evil to those who have touched them in any way...” — W. Thompson,
Lord Kelvin. (1892).
The mathematics of quaternions is outside the scope of this course. However, unit quaternions are very
useful for encoding 3D rotations, and you’ll be seeing them a lot in lab. A unit quaternion Q is a vector
with four components: x, y, z, and w, such that ‖Q‖ = 1. (Different software may represent quaternions
as WXYZ or XYZW; watch out for that!) You can find these terms from an axis angle representation
as follows:

w = cos

(
θ

2

)
x = ω1 sin

(
θ

2

)
y = ω2 sin

(
θ

2

)
z = ω3 sin

(
θ

2

)
where ω is a unit vector along the axis of rotation, and θ is the angle of rotation.

Benefits over Euler angles

• Represent SO(3) without singularities

Benefit over Rotation Matrices

• Only requires four values, rather than 9.

• Quaternion multiplication is much faster than matrix multiplication.

Problem 8. Prove that any quaternion generated from a unit ω and an arbitrary θ will be a unit
quaternion.

||Q|| = ω2 + x2 + y2 + z2

= cos2
(
θ

2

)
+ ω2

1sin
2

(
θ

2

)
+ ω2

2sin
2

(
θ

2

)
+ ω2

3sin
2

(
θ

2

)
= cos2

(
θ

2

)
+ sin2

(
θ

2

)
||ω||2

= cos2
(
θ

2

)
+ sin2

(
θ

2

)
= 1
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8 Rodrigues’ formula

What if we don’t want to use the elemental rotation matrices Rx, Ry, Rz? To express a general rotation
about some axis ω with ||ω|| = 1 by some angle θ, we utilize Rodrigues’ formula to extract the resulting
rotation matrix:

R = I + ω̂sinθ + ω̂2(1− cosθ)

where theˆoperator transforms a vector into its skew symmetric matrix as such:

ω =

ω1

ω2

ω3

 ; ω̂ =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 ;
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