
EECS C106B: Project 2 - Nonholonomic Control ∗

Due date: February 23rd at 11:59pm

Path Planning for the Front Wheel Steering Car Model

You will develop path planners for a second order nonholonomic system (e.g. cars) using three methods. You’ll use
an optimization-based planner, a modified RRT, and a sinusoidal steering method based off the constructive
controllability material you’ve been learning in class.
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1 Theory

For this project, you’ll be running a script that makes a unicycle model robot behave like the front wheel steering
car, also known as, the “bicycle model.”

Figure 1: Dynamics of the Front Wheel Steering Car Model

The front wheel steering car model has the following dynamics [1]:
ẋ
ẏ
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where u1 is the car velocity, and u2 the steering rate. Additionally, we will also have some constraints on our state
variables. For instance, there will be constraints on (x, y) based on how large the environment is, and a constraint on
the steering angle ϕ. There will also be lower and upper bounds on the control inputs (u1, u2). Much of this project
will involve finding ways of dealing with these constraints while coming up with a feasible motion plan for the car.

As you can see the two input vector fields g1 and g2, where

g1 =


cos(θ)
sin(θ)

1
l tan(ϕ)

0

 (2)

and

g2 =


0
0
0
1

 (3)

do not span the whole state space R4. In order to examine the steerability of the system, we examine the Lie algebra,
which is found by taking successive Lie Brackets of the input vector fields. The Lie bracket represents the second
order terms that arise from alternating forward and reverse control of two inputs, and can be calculated through

g3 = [g1, g2] =
∂g2
∂x

g1 −
∂g1
∂x

g2 (4)

g4 = [g1, g3] (5)

g5 = [g2, g3] (6)

and so on. Working out the Lie Brackets shows that g3 controls θ, and g4 controls x and y perpendicular to the
direction the car is facing. Both of these directions are constrained by velocity constraints, but by switching between
steering left and right and driving forwards and backwards, you can generate motion in these directions.
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1.1 Path Planning for Nonholonomic Systems

In this project, you’ll be implementing a couple different path planners for this nonholonomic system. Note however
that path planning for nonholonomic systems is a very open research problem, and that all of the methods presented
here are imperfect in many ways. You’ll be developing, in no particular order:

• An optimization-based planner. You’ll be taking the path planning problem, discretizing it, and converting it
into a nonlinear programming problem, which will be fed to an optimizer.

• A modified RRT designed to work for second order nonholonomic systems. By using clever motion primitives
and sampling heuristics, we can get (reasonably) fast planning.

• A sinusoidal path planner based on this paper by Sastry and Murray [2]. This planner constructively generates
a feasible path in essentially finite time, but it has some issues with obstacles.

1.2 Optimization-Based Planning

One way to solve the path planning problem is to format it as a nonlinear optimization problem. This method allows
us to get an “optimal” path according to a chosen metric, and incorporate any number of constraints, from obstacles
to input bounds to nonlinear and/or nonholonomic dynamics. Unfortunately, this method’s primary technique is also
its major disadvantage: Nonlinear optimization problems are usually nonconvex. This means that it’s often
impossible to prove the existence of a solution and that any solution we find is only guaranteed to be a local
optimum, rather than the global optimal solution. There are many ways to model a path planning optimization
problem, but the one we’ll be using is

q∗, u∗ = argmin

N∑
i=1

(
(qi − qgoal)

TQ(qi − qgoal) + uT
i Rui

)
+ (qN+1 − qgoal)

TP (qN+1 − qgoal)

s.t. qi ≥ qmin, ∀i
qi ≤ qmax, ∀i
ui ≥ umin, ∀i
ui ≤ umax, ∀i
qi+1 = F (qi, ui), ∀i ≤ N

(xi − obsjx)
2 + (yi − obsjy )

2 ≥ obs2jr , ∀i, j
q1 = qstart

qN+1 = qgoal

1.3 The Representation

A path at its core is a function q(t) that describes the system state over time, and possibly a function u(t) which
describes the open-loop control inputs needed to drive the system along this path [3], but there are many ways to
represent such a path. By far the most common parameterization is via waypoints, or an array of states and inputs
over time [q, u, t]. These waypoints may either be at constant intervals [3, 4] or not [5]. If waypoints are at constant
intervals, you’ll need to choose a time T , or a number of waypoints N in which the system must reach its goal.
Generally, using nonconstant time intervals requires you to add the times ti for each waypoint as variables to be
optimized alongside qi and ui. This makes the optimization problem much harder, but allows the system to reach the
goal in variable time. We’ll be using waypoints with constant time intervals in this planner. Other ways to represent
paths are via splines [6, 7] or polynomials, or via more esoteric methods like Riemannian metrics [8, 9].

1.3.1 The Dynamics

In order to work with waypoints, which are a discrete representation of a path, we need our dynamics to be discrete
as well. The ideal way to discretize our system would be to integrate our states over the time between inputs:

qN+1 =

∫ tN+1

tN

F (qN , uN )dt
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However, integrals can be rather computationally expensive to compute. Since we’ll be solving our dynamics many
times during the optimization, we’ll have to use some computationally feasible approximations. The easiest
approximation of an integral is an Euler integral:

x(t+ δt) =

∫ t+δt

t

x(t)dt ≈ x(t) + ẋ(t)δt

This approximation actually stems from the definition of a derivative

ẋ = lim
δt→∞

x(t+ δt)− x(t)

δt

So as δt approaches zero, the Euler approximation exactly equals the value of the integral. Since we’re using
waypoints separated by constant time intervals, the discretized dynamics will be the same between every pair of
waypoints.
The Euler integral is a first order approximation of an integral. We could use higher order derivatives to make it
more accurate. This is called a Runge-Kutta approximation. We could also use collocation methods to better
approximate the integrals [5]. In general, more accurate integration methods are more computationally expensive,
but the additional accuracy becomes necessary for highly dynamic systems like quadcopters or legged robots.

1.3.2 The Cost Function

The cost function is the optimality metric by which we judge our path. We choose to use a very simple cost function:

J =

N∑
i=1

(
(qi − qgoal)

TQ(qi − qgoal) + uT
i Rui

)
+ (qN+1 − qgoal)

TP (qN+1 − qgoal)

This cost function 1 has two components: the stage cost (qi − qgoal)
TQ(qi − qgoal) + uT

i Rui is the cost at each
timestep i. Q penalizes the distance from the goal of the system at every timestep, while R penalizes the input at
each timestep. (qN+1 − qgoal)

TP (qN+1 − qgoal) is called the terminal cost, and it penalizes the distance from the goal
of the last timestep. This cost isn’t actually necessary in our case, since we have a constraint that the last state be
the goal. However, sometimes this constraint isn’t possible to fulfill (we haven’t given the system enough time, the
state isn’t reachable, or our constraint tolerance is too tight). In this case, we can remove that constraint and rely on
our P cost to get us as close as possible. Usually P is set as Q or some scalar multiple of it.
The cost function can potentially evaluate much more than distance and energy (input) usage. Often smoothness
(minimization of qi − qi−1 or ui − ui−1), safety (distance from obstacles) or other “soft” constraints will be added to
the cost function as well [3].

1.4 The Obstacles

Representing obstacles is often one of the hardest aspects of path planning. There are two main problems in obstacle
representation. The first is how to represent arbitrary obstacles as collections of primitives, and the second is how to
represent these primitives in the robot’s configuration space.

For the first problem, there are a couple ways to represent obstacles. The easiest is to use circles or spheres
(depending on if you’re planning in 2D or 3D space). It’s easy to compute the distance to a sphere, but
unfortunately using spheres result in quadratic constraints, which will often slow down your optimizer. Obstacles in
the real world are usually not spheres however, so often planners will represent arbitrary obstacles as collections of
spheres, with some extra buffer space to avoid accidental collision. However, this can potentially restrict the free
space enough to make the problem infeasible (this can occur in so-called “narrow passages”, which are a common
research topic in path planning).

More complex object primitives, like ellipses or polytopes (polygons in n dimensional space) can be used. Polytopes,
which are just collections of hyperplanes, can potentially decrease computation time, but often more complex
primitives increase computation time [4, 10]. You can also use signed distance fields [3], which are also called
costmaps. These maps can be useful in that they can represent arbitrarily shaped obstacles, and provide gradient
information no matter the shape, but are problematic in that they are stored as discrete arrays and therefore require

1Note: this cost function looks very similar to the cost function used in LQR control. This is no accident. We’re actually solving the
nonlinear version of the constrained finite time discrete LQR problem [10].
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the space to be gridded. As a result, they’re only suitable in spaces of lower dimension (like 3D space, for example).

The other problem in representation is representing the obstacles, which are normally defined in the real world, in
the configuration space of the robot. Even for simple robots, the representation of the obstacle in the configuration
space can be somewhat difficult to compute, as can be seen in figure 2. For more complex robots like arms, it’s
impossible to represent obstacles in the configuration space (why?), so researchers need to use clever tricks to
perform optimization [3, 4].

Figure 2: Simple workspace obstacles represented in the configuration space of a triangular robot [11]. How do you
think the representation would change if the robot could spin?

The final problem is how to ensure safety between waypoints. If you’re using waypoints with constant intervals, you
can calculate the maximum difference ∆q = qi+1 − qi and enlarge your obstacles enough that a path of that length
cannot collide with an obstacle. If δt is small this is a reasonable assumption to make, but if it’s variable or large
you’ll need to account for these collisions [3, 4].

1.5 RRTs for Nonholonomic Systems

RRT (which stands for rapidly-exploring random tree) is a sampling based motion planner, and is one of the most
commonly used motion planning algorithms in industry [12]. RRT works by iteratively building a graph on the
configuration space, starting from a start configuration, until we reach within some target neighborhood of the goal
configuration.

The standard RRT algorithm proceeds as follows. The algorithm takes as input a start configuration s, a goal
configuration g, a goal threshold ϵ, and a configuration space C which has knowledge of the environment (such as
obstacles or the robot model).

1. Initialize an empty graph G. The graph will have robot configurations as vertices. Edges between
configurations will be motion plans that take the robot from the first configuration to the next.

2. Add the start configuration s to G.

3. Until we either succeed or exhaust the maximum allowable number of iterations, do:

(a) Sample a configuration crand from C at random. If this configuration is in collision with an obstacle,
discard it and retry.

(b) Find the nearest node in G to crand. Call this node cnear.

(c) Construct a local plan p that steers the robot from cnear to crand. If this plan is in collision with an
obstacle, discard it and return to (a).

(d) Take some small prefix of this plan. i.e. instead of following the whole plan and going all the way to crand,
construct a new plan p′ that is simply p followed for a small ∆t amount of time. The rationale here is that
we are taking a small step in the direction of crand. This path p′ ends at some configuration cnew. Add
this configuration as a vertex to G. Add the path p′ as an edge between cnear and cnew to G.

(e) If cnew is within ϵ of the goal g or we reach the maximum number of iterations, then we are ready to stop
the search. Treat cnew as your final configuration. Reconstruct the path from the start to cnew, and return
it as our motion plan. Otherwise, return to (a).

When planning for the front wheel steering car model, there are a few key ways in which the above algorithm needs
to be modified. First off, our configuration space C is the state space of a robot, and is the set of all (x, y, θ, ϕ) states
that the robot can be in. Our start and goal configurations are given in this state space. So, the first thing we need
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to decide on is how we measure distances in this space. It is not sufficient to just consider the (x, y) distance between
two configurations, since we also care about aligning the heading angle θ. So we need to come up with a distance
function that considers at least the x, y, θ variables. This will allow us to plan for the heading angle as well, and will
allow us to perform manipulability tasks like parallel parking and point turns.

The second consideration concerns the local planning step. Step 3 (c) involves constructing a local motion plan that
can take the robot from the configuration cnew to the configuration crand. However, in the case of the front wheel
steering car model, this becomes tricky since we need to find a local plan that respects the dynamics of the robot.
The trick here will be to take advantage of the fact that in step 3 (d) we decide to move only some prefix of length
∆t along the local plan. So, instead of finding a complete motion plan to the sampled vertex, we will instead directly
choose a local plan from a set of possible plans of length ∆t. These small motions will be called motion primitives,
and at each step we will simply pick the motion primitive that brings us closest to the sampled configuration. This
will allow us to quickly perform the local planning step, since we can pre-determine the set of motion primitives we
will be choosing from.

The next two sections describe these two considerations in a bit more detail.

1.5.1 The Distance Function: Metrics on SE(2)

The distance function is an important design decision, and will affect how well your algorithm performs. The first
observation we can make is that we only need to consider the states (x, y, θ) in our distance function. It suffices to
worry only about these variables, since we have direct control over ϕ so we can set it to its desired value once we
have aligned the other variables. With these three variables, we have a parameterization of SE(2), and we can use
any metrics that work on SE(2).

A naive approach might be to simply take the cartesian distance in (x, y, θ) space. This is a bad idea, however, since
then the angles 0 and 2π look like they are very far away, when in fact they are the same. So we need to pick metrics
that respect the periodic nature of the θ state variable. You can find a number of good metrics for motion planning
in SE(2) from various motion planning textbooks. The relevant section of Planning Algorithms by Steven M.
LaValle is here [13]. The rest of the textbook is also a good read and has many relevant sections related to sampling
based motion planning.

1.5.2 The Local Planner

As mentioned above, one way to design our local planner is to simply have it pick between a predetermined set of
motion primitives. These should be a set of motions that sufficiently span the set of movements available to our front
wheel steering car model robot. Remember that an RRT will simply return a path constructed by chaining together
edges in the graph. If each edge is going to be one of our motion primitives, we need to be careful to pick a set of
motion primitives that are expressive enough that we can move from any configuration to any other configuration by
chaining them together (otherwise we have no hope of finding a solution).

For instance, one set of motion primitives might be {moving forward, moving backward, moving forward while
turning left, backward while turning left, forward while turning right, backward while turning right}. This wouldn’t
be sufficient, however, as you also want to allow the planner to pick from a variety of different speeds. You should
spend some time designing a good set of motion primitives. Another way to pick motion primitives is to perhaps
start off with some nice sequence of control inputs, and see what kinds of paths they generate (for instance, what
does the robot do if we command it to move forward at constant velocity a1, and steer according to a sinusoid
ϕ̇ = a2 cos(ωt)?). You may also want to look at Dubins/Reeds-Shepp Paths for inspiration [14, 15].

1.5.3 Sampling

A final consideration is the sampling strategy. You may find that simply sampling uniformly at random does not lead
to very good performance. Instead, you may find that you need to implement better sampling heuristics. For
instance, you may want to bias your sampler toward making progress towards the goal. A couple possible sampling
heuristics to this end are:

• Goal-bias: Pick a number p ∈ (0, 1). With probability p, sample the goal directly. Else, sample at random.

• Goal-zoom: Pick a number p ∈ (0, 1). With probability p, sample from a ball of radius mini d(xi, g) centered at
the goal g, where x1, ..., xn are the configurations currently in your graph (and d is your distance function).

Feel free to design other heuristics that you find work well.
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1.6 Bang-Bang Control

In class, you initially learned that you could steer your system in nonholonomically constrained directions by
alternating your control inputs. This is known as bang-bang control. While bang-bang control can work well as a
control strategy in other situations, actually actuating a Lie bracket using bang bang control works pretty badly.
You end up getting a vibrating, jerky trajectory that drifts unpredictably if the time between alternations isn’t
differentially small. This is why we use sinusoidal steering. We’ve provided a file called bang_bang.py that you can
play around with to gain some intuition about Lie brackets.

1.7 Steering with Sinusoids

You’ll also be implementing the steering with sinusoids algorithm from this paper by Sastry and Murray[2]. They
prove that a good way to control nonholonomic systems is, rather than using a bang-bang “square-wave” approach,
to control the inputs with out-of-phase sinusoids. To do this, they require that the system dynamics approximate a
canonical model

ẋ1 = u1

ẋ2 = u2

ẋ3 = x2u1

ẋ4 = x3u1

Our car model does not match this canonical form, but can be made to approximate it by applying a nonlinear
transformation

Canonical Car Model

ẋ = v1, v1 = cos(θ)u1

ϕ̇ = v2, v2 = u2

α̇ =
1

l
tan(ϕ)v1, α = sin(θ)

ẏ =
α√

1− α2
v1

As you can see, this model approximately matches the canonical form, with

ẋ1 = v1

ẋ2 = v2

ẋ3 = f(x2)v1

ẋ4 = g(x3)v1

Even though ẋ3 and ẋ4 have nonlinear terms, we can use Fourier analysis to get rid of them. Another problem is not
so easy to get rid of; this model contains a singularity at θ ∈ {90◦,−90◦}. When the robot is turned 90◦, we know
that all the input velocity u1 goes in the y direction, and everything works normally. However, when that occurs in
this model, u1 goes to infinity, α̇ goes to zero, and and ẏ goes to 0

0 . One potential solution is to match the canonical
model in a different way, by replacing x with y as the first canonical state. The model would look something like this:

Alternate Model

ẏ = v1, v1 = sin(θ)u1

ϕ̇ = v2, v2 = u2

α̇ = −1

l
tan(ϕ)v1, α = cos(θ)

ẋ =
α√

1− α2
v1

This is also an approximation of the canonical system, except this system is undefined at θ ∈ {0◦, 180◦}. You could
simply switch models depending on where θ happens to be, perhaps even within one plan. Another thing you could
do is ignore the canonical form and use θ̇ = 1

l tan(ϕ)u1 for planning changes to θ (but not y), because as you’ll see,
prescribing a direction for x is unnecessary in computing an open loop control law for θ.
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1.7.1 The Algorithm

The algorithm for developing an open-loop path for steering is deceptively simple, but contains a couple very tricky
bits. It’s conducted in three stages:

1. First, steer x and ϕ to their desired states. This is reasonably simple, and requires choosing
vi = (xid − xi)/∆td, where ∆td is the desired time to complete the maneuver.

2. Second, steer θ or α to its desired state. To do this, set

v1 = a1 sin(ωt)

v2 = a2 cos(ωt)

The maneuver will run for 2π
ω seconds (one period), and its magnitude will be determined by a1 and a2. The

tricky bit comes when trying to select a1 and a2 to move some desired magnitude in θ. If the system followed
the standard canonical form, the difference would simply be xij(

2π
ω ) = xij(0)− a1a2

ω . However, since our model

is nonlinear, this doesn’t work. To find the change in α, we first look at the change in ϕ. Since ϕ̇ = a2 cos(ωt)
we know

ϕ(t) = ϕ(0) +
a2
ω

sin(ωt) (7)

Note that ϕ( 2πω ) = ϕ0, which demonstrates that these sinusoids don’t change xi, only xij . Thus,

α̇(t) = f(ϕ(t))v1(t) = f
(a2
ω

sin(ωt) + ϕ(0)
)
a1 sin(ωt) (8)

We could find α( 2πω ) by integrating, but this integral is very difficult to compute. One way to (slightly) simplify
it is to use a Fourier expansion.

As you likely learned in your lower division math classes, periodic functions can be represented as a summation
of sinusoids called the Fourier Series. By taking this expansion, we approximate

f
(a2
ω

sin(ωt)
)
= β1 sin(ωt) + γ1 cos(ωt) + β2 sin(2ωt) + γ2 cos(2ωt) · · · (9)

Which means that our integral becomes

α(
2π

ω
) = α(0) +

∫ 2π
ω

0

β1 sin(ωt)a1 sin(ωt) + γ1 cos(ωt)a1 sin(ωt) + β2 sin(2ωt)a1 sin(ωt) + · · · dt (10)

Now, we use the property that sinusoids of integrally related frequencies are mutually orthogonal over their

period. Two functions f(x) and g(x) are orthogonal on x ∈ [a, b] if
∫ b

a
f(x)g(x)dx = 0. The fact that the terms

of the Fourier sine series are orthogonal make sense since the sinusoids essentially form a basis with weights β
and γ. By using this property, all but the first term in the integral disappears, leaving us with

α(
2π

ω
) = α(0) +

∫ 2π
ω

0

β1a1 sin(ωt)
2dt = α(0) +

πa1β1

ω
(11)

This is nice and easy. Of course, β1 still requires an integral to compute:

β1 =
ω

π

∫ 2π
ω

0

f
(a2
ω

sin(ωt) + ϕ(0)
)
sin(ωt)dt (12)

You’ll have to compute this integral numerically and find an a1 and a2 that result in a desired translation of
xij . You may have to implement binary search for this, or some other method to find these values. Also note
that it may be easier to numerically integrate α directly, rather than numerically finding β1. However, this may
make it much more computationally intensive to find a1 and a2.

3. The third step is to use integrally related sinusoids to control y without changing any of the other variables.
Here, we choose

v1 = a1 sin(ωt)

v2 = a2 cos(2ωt)

8
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Once again, we have to deal with a very hairy integral in order to figure out y( 2πω ). We want to find

y(
2π

ω
) = y(0) +

∫ 2π

0

ωg(α(t))a1 sin(ωt)dt (13)

Where

α(t) = α(0) +

∫ t

0

f(
a2
2ω

sin(2ωτ) + ϕ(0))a1 sin(ωτ)dτ (14)

We use the Fourier Series to get

y(
2π

ω
) = y(0) +

∫ 2π

0

ωβ1 sin(ωt)a1 sin(ωt) + γ1 cos(ωt)a1 sin(ωt) + β2 sin(2ωt)a1 sin(ωt) + · · · dt (15)

Which becomes

y(
2π

ω
) = y(0) +

πa1β1

ω
(16)

where

β1 =
ω

π

∫ 2π
ω

0

g (α(t)) sin(ωt)dt =
ω

π

∫ 2π
ω

0

g

(∫ t

0

f(
a2
2ω

sin(2ωτ) + ϕ(0))a1 sin(ωτ)dτ + α(0)

)
sin(ωt)dt (17)

You can expand this out, but it won’t be very pretty. You’ll still need to do quite a lot of numerical integration.
In fact, you’ll assuredly have to do binary search here, since β1 depends on a1 as well as a2. Previously, you
could set an arbitrary a2, find β1, and then set a1 to produce the desired displacement. Now you’ll need to do
binary search on a1 to find the correct combination of a1 and β1 in order to generate the desired displacement.

While finding a1 and a2 for general constraints is particularly difficult, there are ways to simplify the model you use
for certain conditions. Furthermore, I suggest that you use a heuristic method to get things somewhat working
before implementing all the integrals.

1.7.2 Binary Search for Determining Amplitudes

When controlling y, you want to find some values a1 and β1 such that

πa1β1

ω
= y

(
2π

ω

)
− y(0) (18)

Unfortunately, β1 depends on a1, so you can’t just set β1 to an arbitrary number (by setting a2 to an arbitrary
number) and find an a1 that will work. You have to set a2 and then find a1 dynamically. Luckily, β1 happens to be
monotonic as a function of a1; if the steering amplitude is small enough (within reason), then the faster (and farther)
you drive forward, the more you’ll travel in y. This means that given an a2 you can use binary search to efficiently
find the best a1.

1.7.3 Dealing with Constraints

The steering with sinusoids algorithm was originally designed to work with unconstrained systems, but can
reasonably be modified to work with state and input constraints by using multiple motions on each state rather than
a single motion. State constraints on x and ϕ can be easily implemented as limits on the amplitudes of your
sinusoidal inputs. You won’t need to deal with limits on θ/α, but how would you deal with limits on y?
Input bounds on ϕ̇ are similarly easy to implement, but bounds on v will be harder to implement. You may need to
use heuristics to properly deal with them, and it’s fine to be a bit more conservative on your constraint checking than
you absolutely need to.

1.8 Tracking Nonholonomic Open Loop Trajectories (Extra Credit)

Creating these open-loop trajectories is all well and good, but as you’ve seen, executing trajectories in the real world
never works perfectly. Thus, in order to properly execute trajectories provided by the above planner, we need to add
feedback control. Tracking trajectories for nonholonomic systems is also a tricky problem, but for common systems
(like the unicycle or the front wheel steering car model) many controllers already exist. Thus, we’ve decided to make
this section very open-ended. For extra credit, implement a control law that will drive tracking error to zero. You
may use any control technique you’d like, be it from a paper or your own creativity. Feel free to use any heuristics
you’d like as long as you can justify their use.
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• Remember that heuristic techniques like cascaded control, point-offset methods, and gain scheduling can be
powerful tools. Feel free to use PID as well (though the more work you want your PID to do the harder it’ll be
to tune).

• There are a number of the papers that cover tracking control for mobile robots [16–19].

• Lots of controllers [6, 20] exist for the unicycle model. In many cases you can adapt them to the front wheel
steering car model.

• Professor Sastry has a number of papers on tracking control for nonholonomic systems such as [21]. Feel free to
try implementing some of these more rigorous papers, but they can be challenging to work with.

2 Project Tasks

For this project, you’ll write three types of planners to plan nonholonomic motions. In the starter code, you have
been given a number of environments that you can load onto the simulator and test your planners. These are
empty.yaml, an empty 5m x 5m space, map1.yaml, a 10m x 10m space with 2 obstacles, and map2.yaml, a 10m x
10m space with 5 obstacles. See the Getting Started section for instructions on how to use these yaml files to set up
an environment. You should use your planners to execute the following tasks.

1. Manipulation: Using the sinusoid, optimization, and RRT planners, execute the following trajectories in the
empty environment:

• Plan from position (1, 1, 0, 0) to (1, 3, 0, 0) (parallel park).

• Plan from position (1, 1, 0, 0) to (1, 1, π, 0) (point turn).

• Plan from position (1, 1, 0, 0) to another point (simple motion). You may choose this point. Be sure to
avoid a singularity, or refer to this link, which covers how to avoid a singularity. For example, if you use
the point (2, 1.3, 0.7, 0) you will hit a singularity. If you’re unable to come up with a point that doesn’t hit
a singularity, list at least 5 points that you tried that caused a singularity. However, feel free to share any
points that work for you with other groups/on Ed. You don’t have to use the same point for each planner,
although it would be helpful for comparison.

Watch out! The robot has state and input bounds so you’ll have to be careful with how you design your
sinusoidal planner.

2. Navigation: Using the RRT and optimization based planners, execute the following tasks:

• In Map 1 - navigate from (1, 1, 0, 0) to (9, 9, 0, 0).

• In Map 2 - navigate from (1, 1, 0, 0) to (9, 9, 0, 0).

3. Execute the trajectories you generated above for both the manipulation task and navigation task on the
simulator. Discuss how well the simulator is able to track your trajectories with open loop inputs. Does the
simulator have an easier time accurately following the trajectories generated by some planners more than
others? Why or why not?

4. (Extra Credit) Design a closed loop controller for front wheel steering car model plans, and tune it until it
works on all the paths in simulation.

3 Deliverables

To demonstrate that your implementation works, deliver the following in a report. The purpose of these project
reports are to gradually scale up to a full conference-style paper, which you’ll be writing for your final project. Please
format your report using the IEEE two-column conference template. Column suggestions do not account for the
figures.

1. Abstract: An abstract, of at most 150 words, describing what you did and what results you achieved.
Conveying information concisely is a difficult skill, and we want you to practice it here.
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2. Methods: Explain in detail your approach towards each of the three planners, making sure to address the
following questions. You can expect the readers of your report to know everything in this manual, so you don’t
need to repeat any of it (though you should reproduce equations and the like as needed for readability).

(a) For the sinusoidal planner, how did you account for input constraints, state bounds, and the singularity?
(∼ 2 columns)

(b) For the optimization-based planner, how did you decide what to set for N and δt? How might you do this
for an arbitrary goal state? (< 1 column)

(c) For the RRT planner, how did you design your local planner? What distance metric did you use, and
what (if any) sampling heuristics did you use? If appropriate, provide a figure illustrating the motion
primitives you used. (∼ 2 columns)

3. Experimental Results: Summarize the performance of each of the planners on each scenario, using both words
and figures. (< 1 column, plus figures)

(a) For each manipulation task, provide plots of the returned path for all three planners.

(b) For each navigation task, provide plots of the returned path for the RRT and optimization-based planners.

(c) Remember that each figure should come with a detailed caption. An informed reader should be able to
understand the figure without having to read the paper at all.

4. Discussion: (∼ 1-2 columns)

(a) Discuss the performance of each planner. What worked, what didn’t, and why?

(b) Compare and contrast the performance of the planners against one another. When would you use each
type of planner? How might you improve them?

(c) How did your open loop plans fare in simulation? Why do you think any failures occurred?

(d) Why doesn’t the sinusoidal planner work for navigation tasks? How might you modify the steering with
sinusoids algorithm to work with obstacles?

(e) Extra Credit: Describe your control law in detail along with whatever math you’ve used to justify it.
Discuss its ability to track paths in simulation. How does it fare tracking paths produced by each planner?
What about paths on each task? We expect you to illustrate your results with figures and/or data of your
choice.

5. Bibliography: A bibliography section citing any resources you used. This should include any resources you used
from outside this class. Please use the IEEE citation format.

6. Appendix:

(a) GitHub Link: Provide the link to your GitHub classroom repo. Simply push your code to the private
repository that was created for your team, and we will be able to see any changes you push to your
assignment repository.

(b) A video screencap of: your planners working in simulation with all three manipulation tasks. This is a
total of 13 videos (see Project Tasks). It should not be more than 2 minutes long, speed it up if you have
to, just note that.

(c) Bonus: How effective was this assignment at teaching how to work with path planners for nonholonomic
systems? How can the lab documentation and starter code be improved? We are especially looking for
any comments you have regarding the pedagogical successes/failures of the assignment.

7. Page Limit: To prepare you for conference-style papers (and to protect the graders’ time), reports are limited
to 6 pages, not including the bibliography or appendix.

(a) While we are not enforcing a figure limit, we expect your figures to be concise, informative, and readable,
with detailed captions for each. We expect you to need about 10-13 figures. It may be helpful to combine
some of the pictures in the report into one for easy comparison.

4 Getting Started

Create a new ROS workspace to store your code for this project. Remember to build and source your workspace
after you download the starter code.

11

https://pitt.libguides.com/citationhelp/ieee


4.1 GitHub

Please make a private repository and share it with eecsbioeme− 106@berkeley.edu. Include its link in your report.

4.2 Pulling Starter Code Workstations

Please pull from the same repo from project 1. Since this project is mainly in simulation you may use any of the
workstations for this project (turtlebot or sawyer). Or, if you have ROS set up on a personal computer, you could
use that, too.

4.3 Environment Setup

We will be using CasADi as our optimization back-end. If you don’t already have it installed, use (you’ll probably
get errors when you try to do the pip install due to not having access to root, but you can ignore them as long as you
are able to import casadi in Python).

pip install casadi

For this project we will be using STDR Simulator to simulate our robot and test our code. This package allows us to
simulate both the robot and various obstacles (the latter being a feature that Turtlesim unfortunately lacks and why
we are using this instead). First we need to clone the package.

git clone https://github.com/cwru-eecs-275/stdr_simulator.git

If you run into an error building this package regarding the map server on a virtual machine, you may need to run
the command below:

sudo apt install ros-noetic-map-server

Your project file structure should now look similar to this:
proj2

src

proj2 pkg

launch

maps

src

etc...

stdr simulator

stdr gui

stdr launchers

etc...

To create a map of obstacles STDR takes a .png file and a .yaml file and to simulate a robot it takes a .yaml file.
We have created a simple robot for you to use already and a launch file that automatically spawns it onto your map.
We have also provided you with a script to create new maps (create_map.py) as well as a few pre-generated maps
that can be found in proj2_pkg/maps/. Feel free to check those out and create new maps (you can make new robots
as well if you’d like but you don’t need to for this project). To launch a simulation run

roslaunch proj2_pkg init_env.launch map:=empty.yaml start_position:="1 1 0"

replacing empty.yaml and "1 1 0" with whatever map and starting position you prefer. The default map is
empty.yaml and the default start position is 1 1 0 (don’t forget to put the start position inside quotes if you are
changing it from the command line). Look inside the maps folder to see what maps we have provided for you or make
your own using create_map.py. This also allows us to translate the default unicycle model to a front wheel steering
car model. You can now begin running your planners on the simulation!
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4.4 Running Planners

Once you have init_env.launch running, you can use the script main.py to test your implementation. Look at the
starter code section and read this file to figure out what arguments it takes.

This file will load information about the environment (such as obstacles, input limits and state limits, starting state
of the robot, etc.) from the parameter server and initialize a ConfigurationSpace object using this information. It
will then pass this object into your planners to initialize it. The arguments to main.py allow you to specify the goal
location of the robot along with what planner you would like to use. The script will then use your implementation to
come up with a plan, visualize it, and then execute it.

4.5 Starter Code

• src/proj2/converter/bicycle_converter.py You should look through this file to make sure you know how
it works, but hopefully you won’t have to modify it at all. It subscribes to the /bicycle/cmd_vel topic which
listens for BicycleCommandMsg messages. It publishes the bicycle state to the /bicycle/state topic as a
BicycleStateMsg message. If you’re confused at what is in these messages look at proj2_pkg/msg.

• scripts/main.py This is the script you will run to test your planner implementations. This script interfaces
with the bicycle converter node and executes your generated plans using an open loop controller.

You should edit the hyper-parameters passed into your planners from this file to tune them.

• proj2_pkg/src/proj2/planners/sinusoid_planner.py The first of the planner classes you will implement.
You should implement the sinusoidal planner in this file. You should spend lots of time reading the steering
with sinusoids paper. The high level goal of this class is to take in a goal pose, and then use the algorithm
described in the paper to determine a trajectory in the form of a Plan object to steer the bicycle to the goal
pose. The interface for the Plan data structure is defined in configuration_space.py (see below). You should
create individual trajetories to steer x, ϕ, α, and y separately, then combine the trajectories together. Note
that you’ll need to deal with limits on x, y, ϕ, u1 and u2, and may therefore need multiple maneuvers to steer
one state variable. We’ve provided you with basic implementations for steer_x and steer_alpha, though you
may need to edit them depending on how you choose to account for state and input constraints.

• proj2_pkg/src/proj2/planners/rrt_planner.py This is an implementation of an RRT Planner. You do not
necessarily need to edit this file, though you are free to do so. This class uses a ConfigurationSpace object to
interface with the environment and robot model. The ConfigurationSpace object implements methods for
checking collisions of points and plans, sampling new points in the configuration space, and creating local
plans. You will implement these methods for a front wheel steering car model robot in
configuration_space.py. Although you may choose not to edit rrt_planner.py, you should still read
through this file and familiarize yourself with how this file is interfacing with the configuration space.

• proj2_pkg/src/proj2/planners/configuration_space.py This file provides a template for the configuration
space object which is used by your planners to interact with the environment. You should take a look at
rrt_planner.py and optimization_planner.py to see how it is used. Each ConfigurationSpace class
implements methods for checking collision of a given point or path with obstacles, sampling new configurations,
and creating local plans, all of which are crucial parts of the RRT algorithm. Your job will be to implement the
BicycleConfigurationSpace object, and fill in the function stubs in the file.

• proj2_pkg/src/proj2/planners/optimization_planner.py This class we have provided interfaces with your
code that you will implement and wraps it in the same interface as the other planners.

• proj2_pkg/launch/init_env.launch This launch file takes a .yaml and an initial position for the robot and
starts an environment using the .yaml map. Don’t forget to run this when you want your planner to run with
obstacles in simulation. You don’t have to edit this file but taking a look at what it’s doing may be helpful. It
also subscribes to the /bicycle/cmd_vel topic which listens for BicycleCommandMsg messages. It publishes
the bicycle state to the /bicycle/state topic as a BicycleStateMsg message. If you’re confused at what is in
these messages look at proj2_pkg/msg.

Essentially, this node has the job of abstracting away the robot so that it can accept front wheel steering car
model commands. Recall that the robots we are using are all unicycle model robots. This node offers us an
interface wherein the current state of the robot in front wheel steering car model coordinates is published to
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/bicycle/state. Additionally, it allows us to control the robot by publishing front wheel steering car model
commands to a topic /bicycle/cmd_vel. This node then handles converting those commands to equivalent
unicycle model commands and sending them to the robot.

• proj2_pkg/src/proj2/controller/controller.py This currently implements an open loop velocity
controller using a similar file structure to the starter code in Project 1.

• proj2_pkg/maps/create_map.py This file generates a .png image and a .yaml file to create maps for STDR
Simulator. We have already provided you with a few maps to use for your project so you don’t have to use this
but feel free to use it to generate more maps for yourself to test things on.

• scripts/bangbang.py This is a script used to illustrate the “bang-bang” approach to controlling g3 and g4 in
the Lie algebra. You don’t need to turn it in or modify it at all (but feel free to do so). It is simply for your
viewing pleasure.

• scripts/sinusoids.py This is a script used to illustrate the steering with sinusoids approach to controlling g3
and g4 in the Lie algebra. You don’t need to turn it in or modify it at all (but feel free to do so). You should
use this to check/debug the paths you produce in the sinusoid planner and examine what happens when you
use various control inputs. There are two command functions in sinusoids.py, cmd, and cmd_v. The first
actuates the normal inputs of the TurtleBot. The second performs the transformation needed to actuate the
modified input for the steering with sinusoids formulation.

4.6 Implementation Tips

We expect this project to take approximately twenty hours per person for a group of three. Remember that you can
work on all three planners simultaneously.

1. For the sinusoidal planner, you should only need to edit sinusoid_planner.py. The first thing you should do
is fill in steer_phi and steer_y. Once you’ve filled in these functions you should be able to run the simple
motion without any trouble. After this, you’ll need to figure out how to overcome the state bounds and
singularity. You may need to edit some or all of the functions provided, and you’ll likely need to make more
functions or change more things. This is one of the three main tasks in the project.

2. For the RRT planner, you only need to edit configuration_space.py. You’ll need to fill in five functions in
the BicycleConfigurationSpace class. While they should all be reasonably easy to implement, you should
make sure that they run pretty fast so that your RRT doesn’t take too much time. Expect to take a lot of time
figuring out good primitives and sample heuristics, but remember that it doesn’t have to be perfect. This is an
open problem after all. This is the second of the three main tasks in the project.

3. Based on your choice of metric, you will need to change the expand dist parameter passed to the RRT planner
from the main.py script.

4. For the simulator tasks, as long as the planners themselves work, we’re happy. In fact, we expect there to be
issues running in sim; we just want you to comment on them and think about why they occur.

5. For the controller, you’ll probably only have to edit controller.py. Remember that the more time you spend
on the controller theory the less time it’ll take to tune and the better it’ll end up working. At the same time,
complicated controllers can be hard to properly implement and debug. Your implementation doesn’t need to be
novel or groundbreaking, it just needs to work well enough to demonstrate that your paths are executable.
We’re leaving this part deliberately open-ended. You’ll have to figure out a control law and prove to yourself
that it works, you’ll have to write all the code to implement it and plot the results, and you’ll have to tune it
until you’re satisfied.

4.7 Common Issues

• If the simulator does not seem to be following your paths, it is possible that your plan is causing the robot to
hit its steering limit and it is unable to recover afterwards. You should double check and potentially make a
more conservative planner with respect to the maximum steering angles (and maybe also with the input
limits); however, there will always be some drift and an open loop control can not correct itself.

• In your sinusoids implementation, be careful not to hard-code any references to time. You’ll want to play with
how much time you give each subpath in order to compensate for input constraints.
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• Don’t be worried if the optimization planner takes a while to run.

5 Scoring

Table 1: Point Allocation for Project 2

Section Points
Page Limit 5
Figures: Quality and Readability 5
Abstract 5
Methods: Sinusoids 10
Methods: Optimization 5
Methods: RRT 10
Results 10
Discussion 10
Discussion (Controller) 10∗

Bibliography 4
Code 3
Video 3

Summing all this up, this project will be out of 70 points, with an additional 10 points possible.

6 Submission

You’ll submit your writeup on Gradescope and push your code to GitHub. Your code will be checked for plagiarism,
so please submit your own work. Only one submission is needed per group. Please add your groupmates as
collaborators on both GitHub and Gradescope.

7 Improvements

If you notice any typos or things in this document or the starter code which you think we should change, please let
us know. Next year’s students will thank you.
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