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C106B Discussion 6: Grasping

1 Introduction

Grasping objects is a major part of current robotic manipulation research. To approach this problem, we
will discuss wrenches and their mathematical properties and then apply them to the idea of contact forces.

2 Wrenches

Last semester, we started our discussion of robotic arm movement talking about kinematics. This deals with
the di↵erent positions and angles our body frame can potentially reach. The orientation of the B frame with
respect to the A frame is given by the forward kinematic map:

gAB(✓1) = e⇠̂1✓1gAB(0)

We then discussed kinetics, which deal with velocities and accelerations. The relative velocity of a point
given in the body frame for some angular velocity ✓̇ is

vqS = V̂ s
ABqS , V s

AB = ⇠0✓̇ =


vsAB
!s
AB

�

vqB = V̂ b
ABqB , V b

AB = ⇠†✓̇ =


vbAB

!b
AB

�

where ⇠0 and ⇠† are the current spatial and body twists.

Now, we move to dynamics for an arm - analyzing the relationship between forces applied on the body and
its motion! A wrench follows the same kind of linear/angular form as twists:

� =


f
⌧

�

where f is a linear force component, and ⌧ is a torque.

Unlike angular velocities, however, to compute the total torque on some joint, we use the transpose of the
twist.

⌧ = ⇠0T�S

⌧ = ⇠†
T

�B

The di↵erence between the spatial and body wrench �s is the frame in which we are applying the wrench.
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Problem 1: How does a wrench �B applied on the B frame a↵ect the torque at joint ⇠1?

3 Adjoints for Wrenches

Spatial and body velocities are related to one another using adjoints (which are invertible):

V S
AB = AdgABV

b
AB

Adg =


R p̂R
0 R

�

Can we figure out a similar relationship for wrenches?

It turns out we can!
�S = AdT

g�1
AB

�B

Problem 2: The work of a force is calculated by W = F · d. Two wrenches are equivalent if they generate
the same amount of work. Use this concept to prove the adjoint relationship for wrenches.
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4 Jacobians for Wrenches

Last semester, we used the spatial and body Jacobians to transform individual joint velocities to the end-
e↵ector velocity and vice-versa. You also used this concept in Project 1 to generate jointspace trajectory
commands. Recall that

V S = JS(✓)✓̇

V B = JB(✓)✓̇

where ✓̇ is a vector of individual joint velocities. The Jacobian itself is a composition of the individual joint
twists in their current configuration.

To compute the torques on each joint based on a wrench applied in the spatial or body frame, we can use
the Jacobian as well: 2

64
⌧1
...
⌧n

3

75 = (JS)T�S = (JB)T�B

Problem 3: Compute the joint torques if we apply a force on the body frame.
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5 Grasp map

When going into robotic hands, we want to actually grab objects. One contact is defined by

Fci = Bcifci

Where B is the contact basis, or the directions in which the contact can apply force, and f is a vector in
that basis (the actual forces being applied). F is the 6x1 wrench which the contact applies. In our case, we
use a soft contact model, which has both lateral and torsional friction components, so the basis is

Bci =

2

6666664

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 1

3

7777775

However, in the real world, friction is not infinite. For the contact to resist a wrench without slipping, the
contact vector must lie within the friction cone, which is defined

FCci = {f 2 R4 :
q
f2
1 + f2

2  µf3, f3 > 0, |f4|  �f3}

f3 is the amount of normal force being applied, f1 and f2 are the forces in the other two perpendicular
directions, and f4 is a torque. The friction cone therefore tells us the forces that can be applied onto an
object that would be resisted by this contact.

However, we want the wrenches that a contact point can resist in the world frame, not the contact frame.
So we use the adjoint to transform the contact basis:

Gi :=


Roci 0

bpociRoci Roci

�
Bci = AdT

g�1
coi

Bci

A grasp is a set of contacts (maybe multiple fingers in a hand or the two sides of a Sawyer gripper), so we
define the wrenches (in the world frame) a grasp can resist as:

Fo = G1fc1 + · · ·+Gkfck =
⇥
G1 · · · Gk

⇤
2

64
fc1
...

fck

3

75 = Gf

The resulting compound matrix G above is called the grasp map, summing up multiple forces.

6 Force closure

A grasp is in force closure when finger forces lying in the friction cones span the space of object wrenches

G(FC) = R6

Essentially, this means that any external wrench applied to the object can be countered by the sum of contact
forces (provided the contact forces are high enough).

For a two-contact soft-fingered grasp, we also have the following theorem which makes it very easy to check
when a grasp is in force closure. This is theorem 5.7 from MLS.

Theorem. A spatial grasp with two soft-finger contacts is force-closure if and only if the line connecting the
contact point lies inside both friction cones.
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Figure 1: Two finger grasp.

6.1 Discretizing the Friction Cone

Checking that f 2 FC can be di�cult. Often when evaluating grasps, we will write down an optimization
problem that has f 2 FC as a constraint.

FCci =

8
><

>:

p
f2
1 + f2

2  µf3
f3 > 0

|f4|  �f3

We can approximate the (conical) friction cone as a pyramid with n vertices. The level sets of the friction
cone are circles, but the level sets for this convex approximation are n sided polygons circumscribed by the
circle. Thus, the interior of this convexified friction cone is a conservative approximation of the friction cone
itself.

Figure 2: Approximations of the friction cone. From section 5.3 of MLS.

Any point in the interior of this pyramid can be described as a sum of

f = ↵0f0 +
nX

i=1

↵ifi = F↵

where fi are the edges of the pyramid and f0 a straight line in z, and the weights ↵ are all non-negative.
Here, we can write a composite matrix F (di↵erent from the F above!) with the fi vectors as its columns.
This lets us more easily characterize any f in the friction cone. We make the approximation that f 2 FC if
and only if there exists a non-negative vector ↵ such that f = F↵.

With this approximation, the condition that f 2 FC is equivalent to the pair of linear constraints {f =
F↵,↵ � 0} (where this inequality is understood to be element-wise).
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Problem 4:
Let w be a given wrench. Let a two-contact grasp be given to you with contact grasp maps G1 and G2.
We wish to find the input force f 2 FC with the smallest norm that can resist the wrench w applies at the
center of mass of the object being grasped. Using the polyhedral approximation of the friction cone, write
this as a quadratic program.

Problem 5:
Consider the box grasped by 2 soft-finger contacts shown in the figure above. Find the grasp map. Assume
the object is a cube of side-length 2.
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