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C106B Discussion 1: Dynamical Systems & Linear Control

1 Introduction

1.1 Where will discussions fit in to 106B?

Discussions in 106B will primarily be to reinforce your understanding of concepts from lecture with

practice problems. In some weeks, we’ll introduce some new foundational material in discussion so the

following lectures can cover active areas of research in those subjects. Discussions will always be recorded

and live streamed over zoom.

1.2 What content will we cover in this class?

In this class, we’re planning to continue the story we started in 106A.

• We’ll start with controls, covering state space, feedback linearization, and Lyapunov methods.

• Then, we will transition using the topic of controllability to the ideas of motion planning and

steering as well as grasping.

• To discuss building a world map, we’ll talk about more CV, Kalman filtering, and SLAM.

• Then, entering the world of data-driven methods, we’ll talk about reinforcement learning, partic-

ularly compared to optimal control.

• We’ll end the semester with advanced topics like soft robots and flying cars.

As we get into more advanced topics, we’ll provide you with the tools you need to get started in topics

such as analysis, probability, and machine learning.

1.3 Learning Community

In this class, no student should feel left behind! Please ask us or any of your classmates if you have any

questions at all! We want to make this course a wonderful learning experience for all of you.

2 State Space

Nonlinear systems of di↵erential equations come in all shapes and sizes! When trying to perform general
analysis of these systems, this can be challenging! Is there some convention we can use to treat general

nonlinear systems?

In general, we say that any (time invariant) nonlinear system may be described by the following equations:

ẋ = f(x, u), x 2 Rn, u 2 Rm State Equation (1)

y = h(x, u) y 2 Rp Output Equation (2)

This description of a system is called state space. What are the di↵erent components?

1. x: State vector, contains smallest set of variables needed to completely describe system configura-

tion

2. u: Input vector, contains variables we have total control over

3. y: Output vector, commonly contains variables we are interested in controlling or those we measure

with sensors

1
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To put an nth
order nonlinear di↵erential equation, x(n)

= h(x, u), x, u 2 R into state space form, we

transform it into a system of n first order equations using phase variables.

q0 = x, q1 = ẋ, ... qn�1 = x(n�1)
(3)

2

64
q̇0
.
.
.

q̇n�1

3

75 =

2

64
q1
.
.
.

h(q0, u)

3

75 (4)

q̇ = f(q, u) (5)

Problem 1: Consider a planar quadrotor of mass m and inertia about the x axis I which is constrained
to move in the yz plane. The dynamics of the quadrotor are described by:

mÿ = �F sin ✓ (6)

mz̈ = F cos ✓ �mg (7)

I ✓̈ = M (8)

Where F 2 R and M 2 R are a inputs to the system.

Rewrite the dynamics of the planar quadrotor as system of first order di↵erential equations of the form:

q̇ = f(q, u) (9)

Hint: Find a set of phase variables for each di↵erential equation and put them all together into one vector!

2

Final state variables

Position of quadrator y z

Angle of quadrotor

Velocity y Z I

state
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3 Linear Di↵erential Equations

Oftentimes, we deal with linear di↵erential equations of the form:

ẋ = Ax (10)

Where A 2 Rn⇥n, x 2 Rn
. The solution to this di↵erential equation for an initial condition x(0) = x0 is:

x(t) = eAtx0 (11)

Where eAt 2 Rn⇥n
is the matrix exponential of At, defined:

eAt
= I +At+

(At)2

2!
+

(At)3

3!
+ ... (12)

Problem 2: Show that the matrix exponential of a diagonal matrix A 2 Rn⇥n is computed:

eAt
=

2
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. . .

.

.
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0 . . . e�nt

3

75 (13)

Where �i are the eigenvalues of A.
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4 Concepts of Stability

An equilibrium point of a system ẋ = f(x, u) is a point (xe, ue) where:

0 = f(xe, ue) (14)

At an equilibrium point, the evolution of the system is “frozen.” Notice that the zero vector x = 0 is

always an equilibrium point of ẋ = Ax.

Let’s think of a rough definition of what it means for an equilibrium point to be stable. If we start at

an initial condition x0 close to an equilibrium point and remain close for all time, the equilibrium point

is stable. Otherwise, the equilibrium point is unstable.

The following problem highlights a special case of a relationship we’ll explore more in homework 1.

Problem 3: Suppose that A 2 Rn⇥n is a diagonal matrix with real eigenvalues. Consider the linear
di↵erential equation:

ẋ = Ax, x 2 Rn⇥n
(15)

Show that limt!1x(t) = 0 for any initial condition x(0) = x0 2 Rn if all of the eigenvalues of A are
less than zero. What does this tell us about the e↵ect of eigenvalues on the stability of xe = 0?
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5 State Feedback

We previously saw that the stability of the origin of a linear system is linked to the eigenvalues of the

matrix A. Can we use this knowledge to stabilize unstable linear systems?

Suppose we have a linear system, this time with a scalar input u 2 R, as follows:

ẋ = Ax+Bu, x 2 Rn, u 2 R (16)

If an eigenvalue of A has a real component greater than zero, this system will be naturally unstable if

we don’t provide the system with some control input. Let’s try the input:

u = �Kx, K = [k1 k2 ... kn] (17)

Plugging this into our system:

ẋ = (A�BK)x (18)

Using this input, we can move the eigenvalues of many linear systems to stable locations! This is a form

of feedback control known as state feedback. Note that state feedback also extends to the multi-input

case.
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