
 

I.name
ex MPs CLGCBFs

Build out a fee for solving of problems

Some DT system

state

Objective variables
for time steps N find optimal inputs

no.i.nu

General cost function

j Lg Xn EG LGK.ua

t.EE stage

What we want to solve

avg min

ui vi
4 Ed hfxa.nu

Often really hard to solve

one way to solve

D.sn
EI misses

Assume we already know Jon 3
Solve for optimal inputs for i N 3

1 u un hson
EEhlxe.nu



u on
h x ma thelx 7 II 4 sn

Taken out of Σ I
Mish Lai J titi

it She uh

J Me Lexi Ui Jf flexi ui

Bellman Equation
Recursive equation for cost

Use D P

J Lf xn function of our last state

i MI haw Un t e Le fan i Un n

I EE
mginpntasaantoworn

i satingsEna is.euyf'a
Problems system 7kt axiet but

Cost J x

a

work backwards to solve for optimal cost each
time step



Start w terminal cost

Ji Lean

Take one step back

J 1 h x n un n Jn xn E

i i

In un a bun

EE III I fate

J In u a x zabxn.hn_ fun

Want to find input minimizing
cost

Quad atic fun set derivative to 0

fun.it abxn it 25un i
0

solve for an

Un t I 52 ab 0

un

Effectively just state feedback

Can warn all the way back to Xo

A basic LQR controller



Q.TLJITme systems own transition turnout costs

are unknown

Still garment
to find best input any gi en

ws c sohu.ua biggest episodes in our

Reward inverse of cost

we want reward

On Function Q s a function of state action

As.mn p L E.t.onon totsim.es

when running experiments

sample RCs.a.si 8 maTQlsaf
we run some action from some state

Get a reward R Is a s't
Add ftp.tstaffard

to the total rewards from

J discount factor
prefer any

rewards

Temporal Difference Learning
way to update the Q value w samples

Q s a 1 a ones a α sample

Policy what action you should
take a given time step

Taking_them I tyt
maimizes Q value



C106B/206B Discussion 11: Optimal Control & RL

1 Introduction

Today, we’ll talk about:

1. Optimal Control

2. Dynamic Programming in Optimal Control

3. Q-Learning

4. Reinforcement Learning

2 Optimal Control

At the center of optimal control, we have the question: how can we find a control input u that moves
our system in some optimal manner? We encode what’s “optimal” and what’s not with a cost function,
which we represent with the letter J .

By convention, in optimal control, we seek to find the solution to the optimization problem:

u⇤ = arg min
u2U

J(x, u) (1)

This gives us an optimal feedback control law as a function of our state, x. How can we solve this
optimization problem subject to the constraint of our system dynamics?

3 Dynamic Programming in Optimal Control

Dynamic programming is a famous technique that we can use to solve a variety of optimal control
problems. Here, we’ll discuss the discrete time version of dynamic programming. Let’s imagine we have
a linear discrete time system of the form:

xk+1 = f(xk, uk) (2)

Imagine we specify some final time of interest, N , and that we’d like to find an optimal sequence of
inputs u0, ..., uN to the system. A common cost function for this type of system is the following:

J = Lf (xN ) +
N�1X

k=0

L(xk, uk) (3)

As it allows us to account for all N steps! Lf is called the terminal cost, while L is called the stage cost.
Dynamic programming finds a sequence of inputs {u0, u1, ..., uN�1} that minimizes this cost function by
breaking the problem up into smaller, easier to solve pieces.

We can break the problem up into these pieces by considering the optimal cost to go - the optimal cost
remaining after we’ve already executed j steps and still have N � j steps left over. We express this as:

Jo
j = min

{uk,...,uN�1}
[Lf (xN ) +

N�1X

k=j

L(xk, uk)] (4)

1



ME/EECS/BioE C106B/206B Robotic Manipulation & Interaction

The famous Bellman equation allows us to write the optimal cost to go recursively ! This equation states:

Jo
j = min

uj2U
[L(xj , uj) + Jo

j+1(xj+1)] (5)

Where xj+1 = f(xj , uj). Thus, the Bellman equation turns our problem from an optimization over a
sequence of inputs to a set of optimizations over single inputs. By writing problems in this manner, we
can determine the optimal control sequence {u0, u1, ..., uN�1} to the system.

Problem: Consider the discrete time system xk+1 = axk + buk, where xk, uk 2 R. Using dynamic
programming, find an expression for the optimal input uN�1 and the optimal cost to go Jo

N�1 in the
optimal control problem:

U⇤ = arg min
U

x2
N +

N�1X

k=0

(x2
k + u2

k) (6)

Where U = {u0, ..., uN�1} is the sequence of optimal inputs. This is a simple formulation of the famous
LQR control problem!

4 Q-Learning

A Q-function, defined as Q(s, a), is a function to calculate the total rewards of a trajectory if a certain
action is taken from a certain state. Q-learning builds o↵ the idea of optimal control but brings in the
idea of experiential updates to iteratively improve a Q-function. Transition probabilities and costs of
any movements are unknown. Instead, we define some reward function dependent on the overall goal
we want to accomplish. The system is trained to either learn the Q-values or find the optimal policy,
defined as the action resulting in the highest reward at any given state.

Temporal-di↵erence learning with Q-values incorporates samples taken into an exponential moving aver-
age that updates the rewards for a particular state-action pair. Some action is taken from a state, which
is recorded as a sample:

sample = R(s, a, s0) + � ·maxa0 Q(s0, a0)

� is the discount factor, which prefers more recent rewards. As the saying goes, ”A dollar today is better
than a dollar tomorrow!” Then, the Q-value is updated, as per the following equation:

Q(s, a) (1� ↵)Q(s, a) + ↵ · sample

Above, ↵ is defined as the learning rate, or the weight we want to give our new sample. Typically, this
learning rate reduces over time.

Problem: Let’s look at the following gridworld. The top-right square (3,1) has an exit, with a reward
of +10. A movement can be performed to any adjacent square, and it succeeds with some unknown
probability. Let’s say we see the following episodes:

Episode 1:

• (1, 1), right, (2, 1)

• (2, 1), right, (3, 1)

• (3, 1), exit, +10 reward

Episode 2:

• (1, 1), right, (1, 2)

2

F
n

o n o 01 o o o



ME/EECS/BioE C106B/206B Robotic Manipulation & Interaction

• (1, 2), right, (2, 2)

• (2, 2), right, (2, 1)

• (2, 1), right, (3, 1)

• (3, 1), exit, +10 reward

Episode 3:

• (1, 1), right, (2, 1)

• (2, 1), right, (2, 2)

• (2, 2), right, (3, 2)

• (3, 2), up, (3, 1)

• (3, 1), exit, +10 reward

Given a discount factor � of 0.1 and a learning rate ↵ of 0.5, perform TD-learning to find the Q-value
for the state-action pair of [(1,1), right].

5 Reinforcement Learning

The gridworld example is a small and contained. Rewards are easy to store for every state and maximize
by searching through a table. However, for more complicated systems and tasks, performing calculations
in this space becomes intractable.

There are many, many ideas within reinforcement learning, some of which you will have read papers about
in journal club. There are proofs about techniques, applications in certain domains, implementations
in novel ways, etc. Below are some high-level ideas in the ways that deep reinforcement learning is
performed (deep because of neural networks), which should give you a good start when you start reading
papers in this space.

1. Imitation Learning: Imitation learning works exactly the way it sounds. A bunch of expert
actions are provided, and a network learns to perform the expert action from any given state. The
expert actions are then e↵ectively imitated.

2. Policy Gradients: With policy gradients, a reward function is provided. Then, the neural network
is trained to predict actions that maximize the reward function. Because the reward is a function,
it has a gradient that we can use; we perform what is e↵ectively gradient ascent along the reward
function (or gradient descent along its inverse, the loss).

3. Soft Actor-Critic: This very commonly-used method is the continuous version of Q-learning for
higher-dimensional action spaces. Two networks are trained: a critic network predicts Q-values
and an actor network predicts the actions that maximize those Q-values.

4. Model-Based Reinforcement Learning: This method is often used in systems like humanoid
robots, where predicting the next state from a particular action is di�cult. A model is trained
to predict this next state (essentially f(x, u)), and a standard trajectory planning technique like
MPC is used to optimize the system’s path.

5. O✏ine Reinforcement Learning: One issue with systems is that we may not be able to get
samples of the particular task that we are dealing with. We do, however, have a corpus of samples
from a separate task performed by the same system. O✏ine RL techniques allow us to bridge this
gap.

3

iii in

0.001

After Ep 1 ones f right

After Ep 2 Q s a 1 o 5 0.1 f 0.5 0 001

After Gp 3



ME/EECS/BioE C106B/206B Robotic Manipulation & Interaction

There are other important things you would have to know if you are going into reinforcement learning,
such as balancing exploration and exploitation of a policy (finding new states or taking advantage of the
best-trained policy), inverse reinforcement learning (learning a reward function), and algorithms (CQL,
IQL, AWAC, etc.). However, the ideas above should give you some solid grounding while reading new
papers on this topic!

Problem: Consider the half-cheetah, a bipedal robot. We want to train this robot to walk in simulation
using policy gradients. To feed this into our network, we first need to represent the current state of the
robot in some kind of feature vector so that we may predict the optimal action. Construct an observation
vector.

Problem: Now that we have a state, we want to create a reward function that the learning algorithm
optimizes. At the same time, we want to punish movements that are too large to preemptively avoid
losing balance. Construct a reward function.

4


