Robot Usage Guide *

EECS/ME/BIOE C106A/206A Spring 2023

Contents
1 Logistics and Lab Safety 2
1.1 Robot Reservations 2
1.2 Lab Safety e e e 2
2 Setting Up Your Environment 3
2.1 Turtlebot L e 3
2.1.1 Setting up ROS .« o o o e 3
2.1.2 Defining the Turtlebot model L 3
2.1.3 Setting the ROS hostname L e 4
2.1.4 Setting the ROS master URI 4
2.2 Rethink Robot (Sawyer) 4
2.2.1 Setting up ROS .« o L o o 4
2.2.2 Setting the ROS hostname 5
2.2.3 Setting the ROS master URI 5
2.3 Sourcing the .bashrc file oL 5
2.4 Additional Lab Etiquette 5
3 Rethink (Sawyer) Robots 6
3.1 Hardware oL e 6
3.2 Setting up your environment for Rethink robots o o oL 9
3.3 Basic functions e 9
3.3.1 Enmabling the robot L e 9
3.3.2 Controlling the joints from the keyboard o oL 9
3.3.3 Reading the transform Lo 9
3.4 Interfacing with the robot L 9
3.4.1 Joint Trajectory Action Server e 10
3.4.2 Sawyer Movelt! oL 10
4 TurtleBots 10
4.1 Hardware e e e e e e e e 10
4.2 Setting up your environment for TurtleBots oo 11
4.3 Basic functions 11
4.3.1 Start the base functionality L 11
4.3.2 Controlling the TurtleBot from the keyboard 11
4.3.3 Using SLAM e 11

*Developed by Riddhi Bagadiaa, Fall 2022. Adapted for Spring 2023 by Han Nguyen

1 Logistics and Lab Safety

We expect that all students in this class are mature and experienced at working with hardware, so we
give you much more leeway than in 106A. Please live up to our expectations.

1.1

Robot Reservations

Robots should be reserved on the robot calendars:

e Sawyer Robot Calendar

e TurtleBot Calendar

The rules are:

1.

1.2

Groups with a reservation have priority. You can go in and use (or continue using) the hardware whenever
you like if no one has a reservation. However, you must pass along the hardware once the next reservation starts.
Please be respectful and try to plan ahead; it’s not cool to take the first twenty minutes of another group’s
section winding down.

Do not reserve more than two hours at a time per group. This is shared hardware and we want to
ensure that all groups have enough time to complete the projects.

One computer per group (if needed). Please try to limit yourself to one computer per group. In addition,
groups with robot reservations have priority on the computers next to their respective robots. Groups can
accomplish work in parallel by using personal computers, file-sharing software like Git, and/or using simulators
like Gazebo or RViz.

Lab Safety

Remember to follow the lab safety rules:

1.

Never work on hardware alone. Robots are potentially dangerous and very expensive, so you should always
have someone on hand to help if something goes wrong. This person should be another 106B student, though
in cases when group schedules are highly incompatible, you may talk to a TA to arrange an alternate solution,
such as bringing a friend (note that you would be entirely responsible for this person’s conduct).

. Do not leave the room while the robot is running. Running robots must be under constant observation.

No food or drink (except water) in the lab. We already have an ant problem, so do not bring anything
into the lab that may attract more. Keep water in a container with a lid and drink it away from the computers
and robots.

Keep the walkways clear. Make sure your fellow classmates can safely move around the lab and access the
robots with ease. Do not place anything on the floor that may trip or block someone.

Always check the trajectory before executing Movelt! trajectories. You can view a trajectory in RViz.
Sometimes Movelt! plans extremely strange trajectories, and checking them before running them can prevent
damage to the robot. If a trajectory looks strange in RViz, do not execute it on the robot. Try giving the robot
a different start or end position and then replan the trajectory.

Always operate the robot with the E-Stop within reach. Be ready to press the E-Stop button at a
moment’s notice to prevent the robot from crashing into anything. If a robot is going to hit a person, the wall,
or a table, press the E-Stop. Luna wears a parka when it is cold, but not everyone has such protective padding
around them for safety. Be particularly careful of people who may be walking through the aisle between the
Rethink robots and computers.

Terminate all processes before logging out. Because the lab workstations are shared, we sometimes run into
strange bugs. The most common is that someone leaves a process running when they leave the lab, sometimes
by forgetting to log out properly. When the next person uses the same workstation, ROS can get confused by
the additional processes running from the prior user. A particularly insidious example is leaving a roscore
master node running in the background; the next person will not be able to run a master node with proper
communications. To avoid issues like this in the lab, please do the following before leaving:

https://calendar.google.com/calendar/u/0/selfsched?sstoken=UUI5cjdCWXBYRUlOfGRlZmF1bHR8OTZhMTUwZjIxMzJjNTk1ZDJhNjkwMzdkODQ4MjU5Yjk
https://calendar.google.com/calendar/u/0/selfsched?sstoken=UU5TVWdkRl9QT3FYfGRlZmF1bHR8MGExODU4NjFhNzQ2NTU4MzUxNDJiZDc2MmJkOWM5OGE

e Ctrl4+C out of every terminal before closing it. It is critical that you Ctrl+C. Do not Ctrl+Z. Ctrl+7Z
may look like it stops your process, but it really only pauses it. The process will continue to run in the
background.

e Instead of simply logging out of your account, you should type

pkill -u [username]

into your terminal, where [username] is your instructional account username (ee106b-xyz). This will close
out every process on your account before logging you out.

You can also use

ps —ef | grep ros

to check your currently running processes.

8. Do not modify robots without consulting lab staff. In previous semesters we had problems with students
losing gripper pieces and messing with TurtleBots. This is inconsiderate and makes things much more difficult
for everyone.

9. Tell the course staff if something is broken. This is an instructional lab, and we expect a certain amount
of wear and tear to occur. However, if we don’t know something is broken, we cannot fix it.

10. If you are unsure of how to do something, ask someone on course staff. We are all here to learn, so
don’t be afraid to ask for help. Operating the hardware without knowing exactly what you are doing can be
extremely dangerous, so please ask for help whenever you have questions about the hardware.

2 Setting Up Your Environment

To set up your environment to automatically use ROS and interface with the robots, you need to edit your ~/.bashrc
file. The ~/.bashrc file is a script that is run when a new terminal window is started. Adding the commands in this
section to the end of your ~/.bashrc file will automatically set up ROS and the environment variables for connecting
to the robots in every terminal window you open. Be careful with which commands you include and in what order;
some may override or interfere with one another. This is why we suggest you add the commands in this section at the
end of your default ~/.bashrc file. A separate set of commands are required to set up Turtlebots and Sawyers. Make
sure you comment out the Turtlebot commands when using the Sawyers and comment out the Sawyer commands
when using the Turtlebots. As a reference, your ~/.bashrc file should look like this. You can directly copy this file
and replace the contents of your own, but you must make sure the proper edits are made.

2.1 Turtlebot
2.1.1 Setting up ROS

The first additional command you should add to the end of your ~/.bashrc file is for setting up ROS.

source /opt/ros/noetic/setup.bash

to set up only ROS. More specifically, this line tells Ubuntu to run a ROS-specific configuration script every time
you open a new terminal window. This script sets several environment variables that tell the system where the ROS
installation is located. It also adds the directories for all of ROS’s built-in packages to the package path.

2.1.2 Defining the Turtlebot model

Turtlebot 3 is available in two types of models: Burger and Waffle Pi. We will be using the Burger model, so we must
specify it to the environment by adding this line

export TURTLEBOT3_MODEL=burger

https://drive.google.com/file/d/1L8ZtULVNgVj_q_2T3a7guLUYxeldghco/view?usp=sharing

2.1.3 Setting the ROS hostname

After the command to set up ROS, you can set the ROS hostname for your workstation in the lab. This node
environment variable sets the declared network address of a ROS node or tool.

The ROS hostname of the workstation computer’s bashrc file will be the the hostname of the computer you are
using. Adding the following line will set the ROS hostname to the current computer you are using

export ROS_HOSTNAME=192.168.1. [COMPUTER_NUMBER]

where [COMPUTER_NUMBER] is your computer number (1 through 12). This sets the ROS hostname to the specific
computer that you are working on.

The ROS hostname for each Turtlebot is already set correctly to its value. You shouldn’t need to change this, but
you can confirm that it is true as a debugging point if you run into an issue.

Not Required: You can ssh into the Turtlebot’s environment and view the ROS hostname of the Turtlebot in
the bashrc file. Run the following commands on the terminal to do so

ssh [FRUITNAME@FRUITNAME]
cat ~/.bashrc

where [FRUITNAME] is the name of the Turtlebot and the password is [FRUITNAME]2022.
In the bashrc, DO NOT CHANGE ANYTHING but confirm this line is true

export ROS_HOSTNAME=192.168.1.[T3_IP]

where [T3_IP] can be found in the list below

kiwi.local kiwi
mango.local mango
apple.local apple

cherry.local cherry
lemon.local lemon
banana.local banana

You can view this list by running

cat /etc/hosts

in the terminal.

2.1.4 Setting the ROS master URI

If you are running ROS nodes on a robot, you may also need to change the ROS master URI (Uniform Resource
Identifier) on your workstation only. This is a hostname:port combination that tells nodes where they can locate
the master node. In the case of Turtlebots, we set the ROS master as the workstation computer. To do this, add the
following line to your ~/.bashrc file

export ROS_MASTER_URI=http://192.168.1.[COMPUTER_NUMBER]:11311

2.2 Rethink Robot (Sawyer)
2.2.1 Setting up ROS

The first command you need to add to your ~/.bashrc file to set up ROS for Sawyer is

source /opt/ros/eecsbot_ws/devel/setup.bash

which sets up ROS and its built-in packages like the source /opt/ros/noetic/setup.bash command does for Turtle-
bots, but additionally edits the ROS_PACKAGE_PATH environment variable which tells ROS which directories to search
for software packages. Any code you want to run with ROS must be located beneath one of the directories specified
in the list. You want to be able to use the Robot SDK packages in addition to ROS’s built-in packages, and using this
line in the ~/.bashrc file enables you to do so.

It is good practice to only import the ROS packages that you need, so you should only use this line if you are using
the Robot SDK packages as to not clutter your workspace with the things associated with the Robot SDK.

2.2.2 Setting the ROS hostname

After the command to set up ROS, you can set the ROS hostname for your workstation in the lab. This node
environment variable sets the declared network address of a ROS node or tool, and you usually want this to be the
hostname of the computer you are using. Adding the following line will set the ROS hostname to the current computer
you are using

export ROS_HOSTNAME=192.168.1. [COMPUTER_NUMBER]

where [COMPUTER_NUMBER] is your computer number (1 through 11). This sets the ROS hostname to the specific
computer that you are working on.

2.2.3 Setting the ROS master URI

If you are running ROS nodes on a robot, you may also need to change the ROS master URI (Uniform Resource
Identifier) on your workstation only. This is a hostname:port combination that tells nodes where they can locate
the master node. Setting this environment variable to point to a robot will allow you to run ROS nodes on the robot
remotely by setting the ROS master as the robot’s computer rather than your workstation computer. To do this, add
the following line to your ~/.bashrc file

export ROS_MASTER_URI=http://[RobotName].local:11311

2.3 Sourcing the .bashrc file

When you're done editing the ~/.bashrc file, save and close the ~/.bashrec file and re-run it by executing the command

source ~/.bashrc

in each existing terminal that you want to be updated with the new settings. The ~/.bashrc file is only automatically
run when a new terminal window is started, so you have to run this command to manually “source” (run) the ~/.bashrc
file again in order to update an existing terminal. This will only update the terminal window you run the command
in, so make sure to run it in all terminal windows that you want to be updated. After saving the ~/.bashrc file, every
new terminal window you open will automatically be updated with the new settings and you won’t have to source it
manually.

2.4 Additional Lab Etiquette

Because the lab workstations are shared, we sometimes run into strange bugs. The most common is that someone leaves
a process running when they leave the lab, sometimes by forgetting to log out properly. When the next person uses
the same workstation, ROS can get confused by the additional processes running from the prior user. A particularly
insidious example is leaving a roscore master node running in the background; the next person will not be able to
run a master node with proper communications. To avoid issues like this in the lab, please do the following before
leaving:

e Ctrl4+C out of every terminal before closing it. It is critical that you Ctrl+C. Do not Ctrl4+Z. Ctrl+Z may
look like it stops your process, but it really only pauses it. The process will continue to run in the background.

e To log out, use the command pkill -u [username]. where [username] is your login credential. This will close
out every process on your account before logging you out.

3 Rethink (Sawyer) Robots

In the lab, there are Sawyer robots (Ada, Alan, Amir, Azula and Alice) robots. They are from Rethink Robotics
are manufacturing robots designed to operate around people. They are unfortunately no longer supported by the
company, so please be especially careful when using these robots as they are difficult to fix and replace.

Figure 1: Sawyer robot.

3.1 Hardware

Note: Much of this section is borrowed from the Rethink Sawyer Wiki. We picked out the material you will find most
useful in this class, but feel free to explore other resources if you are interested in learning more.

e Arms

e Sawyer: One arm with seven joints. Because the Sawyer only has one arm, we default to calling it to right

arm.

Figure 2: Labeled Sawyer joints and links

e Grippers

e Please ask someone on course staff for assistance when installing or removing a gripper.
e Electric parallel-jaw grippers: 44 mm throw and attachment points for a variety of finger configurations,
meant for lifting payloads up to five pounds

https://www.rethinkrobotics.com/
https://sdk.rethinkrobotics.com/intera/Hardware_Components

e Pneumatic suction grippers: can attach either a single vacuum cup or a multi-cup vacuum manifold

Figure 3: Electric parallel-jaw gripper (left) and pneumatic suction gripper (right).

o Cameras

e Omne camera per arm (Figure 4)

e One camera in the head

Figure 4: Sawyer wrist camera.

e Head

e Panning and nodding abilities
e Camera
e Sonar ring

e Display
e Control

e On-board computer running Linux and ROS Noetic
e Can run ROS nodes remotely or on-board

e Low-level controllers prevent self-collisions and enforce limits on acceleration, torque, and position

e Zero-g mode: If you wish to move the robot arms manually, enable the robot and grasp the cuff of the arm
over its grooves (Figure 5). This will enable the zero-g mode where the controllers are disabled and so the
arm can be freely moved across without much resistance. Do not try to push or pull on the arms
without enabling zero-g mode.

Training Cuff Light

Zero-G Mode

Action button

Grasp button

Figure 5: Diagram of zero-g mode indentations on Sawyer cuff.

e Sensors
e 3-axis accelerometer inside each cuff
e E-Stop and power buttons

e E-Stop button: Sawyers have an emergency stop (E-Stop) button (Figure 6). If you have even the
slightest feeling that the robot is behaving or about to behave dangerously, push down on
this button; the robot will be immediately disabled and the arms will lower slowly. Dangerous behavior
includes but is not limited to any of the following:

e the arm is about to crash into someone/something
e the arm is moving very quickly or jerkily
e the arm is not behaving as expected

In any case, keep a hand on the E-Stop button whenever you are running code on the robot
and don’t be afraid to press it if you think a situation is or is becoming unsafe. You do not need
to hold down on the E-Stop button; after pressing it, it will be mechanically held down until you release it.
To release the E-Stop button from the held-down state, turn the button clockwise until it pops up. Note
that the robot can only be enabled after the E-Stop button is released, and you will need to re-enable the
robot before moving it again. Refer to 3.3.1 on how to enable the robot.

3

Figure 6: E-Stop button with arrows indicating how to turn the button to release it.

e Power button: The power button is located on the left side of each robot, but you should leave the robots
on most of the time and should not need to use this button. Do NOT hold down the power button;
holding down the power button can cause hard drive corruption on the next boot. Just press the power
button once to turn on or once to turn off.

3.2 Setting up your environment for Rethink robots

To automatically set up the Sawyer packages in each new terminal, make sure that your ~/.bashrc file includes the
line

source /opt/ros/eecsbot_ws/devel/setup.bash

If you edited the ~/.bashrc file, make sure to source it in any existing terminal windows that you plan on using. Refer

to the Setting Up Your Environment section for more information about what this line does in the ~/.bashrc file.
To set up your environment for interacting with Sawyer, make a shortcut (symbolic link) in the root of your catkin

workspace to the Sawyer environment script /scratch/shared/eecsbot_ws/intera.sh using the command

1n -s /opt/ros/eecsbot_ws/intera.sh [path-to-workspace]

From the root of the catkin workspace, use the following line to connect to one of the Sawyer robots:

./intera.sh [name-of-robot].local

where [name-of-robot] is ada, alan, amir, azula or alice.

When you are done using any robot, make sure all of the terminal windows where you connected to the robot are
no longer running any processes. Then in each terminal window that is connected to the robot, close the connection
to the robot with the command

exit

3.3 Basic functions
3.3.1 Enabling the robot

In order to control Sawyer’s arms, the robot must be put in the “Enabled” state. Enabling the robot provides power
to the joint motors, which are initially in the “Disabled” state on start-up or after a serious error, such as an E-Stop.
You can enable the Sawyer by running

rosrun intera_interface enable_robot.py -e

3.3.2 Controlling the joints from the keyboard

The joint_position_keyboard.py script allows you to move the robot’s limbs from the keyboard. Start the
joint_position_keyboard.py script by running

rosrun intera_examples joint_position_keyboard.py

3.3.3 Reading the transform
Read the rigid body transformation from the robot base to the hands by running

rosrun tf tf_echo base right_hand

3.4 Interfacing with the robot

Instead of publishing directly to a topic to control Sawyer’s arms, the SDKs provide a library of functions that take
care of the publishing and subscribing for you. Remember that whenever you try to move an arm on Sawyer, it must
be the right one.

3.4.1 Joint Trajectory Action Server

The joint trajectory action server within Sawyer’s SDK allows users to command the robot’s arm through multiple
waypoints and track the trajectory execution. The main benefit of this server is its ability to interpolate between
supplied waypoints, command Sawyer’s joints accordingly, and ensure the trajectory is being followed within a specified
tolerance. You will need to run this before executing a trajectory on the robot.

You can start the joint trajectory action server by running

rosrun intera_interface joint_trajectory_action_server.py

3.4.2 Sawyer Movelt!

Movelt! is an open source robotics manipulation platform that runs on top of ROS and uses kinematics, motion
planning, and collision checking to plan and execute trajectories for robot manipulators. You will need to run this
before executing a trajectory on the robot. Start Movelt by running

roslaunch sawyer_moveit_config sawyer_moveit.launch electric_gripper:=true

Omit the gripper argument if the robot does not have a gripper.

4 TurtleBots

TurtleBot is one of the classic platforms for mobile robotics research and teaching. We have upgraded to now TurtleBot
3 in this class, since it has the latest features. Turtlebot 3 is available in the burger and waffle type of model. We
will be using the burger model in this class. Each Turtlebot has a name mentioned on it and has a different AR tag
number.

Each TurtleBot is assigned to one workstation. You should not use any other TurtleBot besides the one assigned to
your current workstation, but you may use the Turtlebot at station 12 if the TurtleBot assigned to your workstation
is broken.

4.1 Hardware

Note: Much of this section is borrowed from the TurtleBot3 User Manual. We picked out the material you will find
most useful in this class, but feel free to explore other resources if you are interested in learning more.

e Drive base

e Pick up the TurtleBot from under the base on both sides.

e “Unicycle model” tank drive (can rotate in place)

e Encoders on 2 main drive wheels (can measure how far each wheel has turned)
e 360° LiDAR, 9-Axis Inertial Measurement Unit for SLAM and navigation

e Gyroscope and Accelerometer

e Front bumper (can detect collisions)

e AR (augmented reality) tag on top
e Control

e Raspberry Pi running Linux and ROS Noetic and OpenCR

e Can run ROS nodes remotely or on-board
e Power

e Status LED
e Charging port in the drive base

e On-off switch: Please charge the TurtleBots when they are not in use. When charging, make sure that the
power cord is plugged into the charging port in the drive base and the TurtleBot is switched OFF. The
TurtleBot must be switched off in order to charge.

10

http://www.turtlebot.com
https://emanual.robotis.com/docs/en/platform/turtlebot3/features/

4.2 Setting up your environment for TurtleBots

To automatically set up the TurtleBot packages on the PC, make sure that your ~/.bashrc file includes the lines

source /opt/ros/noetic/setup.bash
export ROS_MASTER_URI=http://192.168.1.[COMPUTER_NUMBER]:11311

where [COMPUTER_NUMBER] is the workstation computer number. If you edited the ~/.bashrc file, make sure to source
it in any existing terminal windows that you plan on using. Refer to the Setting Up Your Environment section for
more information about what these lines do in the ~/.bashrc file and how to confirm both ~/.bashrc files on the
workstation and the Turtlebot are correct.

Before you can listen for messages or give commands to the TurtleBot, you’ll have to turn it on. Begin by turning
on the power and checking that you can ping the onboard computer by running

ping [FRUITNAME]

and making sure that there are no errors when trying to connect to the TurtleBot. If pinging doesn’t work, try turning
the TurtleBot off and on again. Note that some of the TurtleBots take several minutes to wake up. When you are
done using the robot, make sure all of the terminal windows where you connected to the robot are no longer running
any processes. Then in each terminal window that is connected to the robot, close the connection to the robot with
the command

exit

4.3 Basic functions
4.3.1 Start the base functionality

Start the TurtleBot basic nodes (including the master node) by ssh-ing into the robot and running

roslaunch turtlebot3_bringup turtlebot3_robot.launch

To launch the camera run

roslaunch turtlebot3_bringup turtlebot3_rpicamera.launch

The TurtleBot is now launched, along with all of its sensors, and it is ready to receive motion commands.

4.3.2 Controlling the TurtleBot from the keyboard

Keep the turtlebot3_robot.launch running and open a new terminal window. Open a new terminal window (don’t
ssh in). Drive the TurtleBot from the keyboard by running

roslaunch turtlebot3_teleop turtlebot3_teleop_key.launch

4.3.3 Using SLAM

SLAM is a useful library which stands for Simultaneous Locomotion and Mapping. It allows the robot to naviagte
through unknown environments with the help of the LiDAR sensor on it. To start it we can run this command on the
PC

roslaunch turtlebot3_slam turtlebot3_slam.launch

11

	Logistics and Lab Safety
	Robot Reservations
	Lab Safety

	Setting Up Your Environment
	Turtlebot
	Setting up ROS
	Defining the Turtlebot model
	Setting the ROS hostname
	Setting the ROS master URI

	Rethink Robot (Sawyer)
	Setting up ROS
	Setting the ROS hostname
	Setting the ROS master URI

	Sourcing the .bashrc file
	Additional Lab Etiquette

	Rethink (Sawyer) Robots
	Hardware
	Setting up your environment for Rethink robots
	Basic functions
	Enabling the robot
	Controlling the joints from the keyboard
	Reading the transform

	Interfacing with the robot
	Joint Trajectory Action Server
	Sawyer MoveIt!

	TurtleBots
	Hardware
	Setting up your environment for TurtleBots
	Basic functions
	Start the base functionality
	Controlling the TurtleBot from the keyboard
	Using SLAM

