
EECS C106B: Project 3 - State Estimation ∗

Due Date: April 7th at 11:59pm

Goal

In this project, we will experiment with three classical state estimation methods: dead reckoning, Kalman filter, and
extended Kalman filter. The purpose of the project is to implement the three estimation algorithms, as detailed below:

• In part A, you will implement a dead reckoning method to estimate trajectory of the turtlebot in simulation.

• In part B, you will implement a Kalman filter to estimate trajectory of the turtlebot in simulation.

• In part C, you will implement a extended Kalman filter to estimate trajectory of the turtlebot in simulation.

• Optionally, you will get 10 bonus points if you manage to successfully implement the extended Kalman filter on
a real turtlebot in the lab, regardless of you being an undergraduate or graduate students.
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1 Theory

Recall from the lectures that estimation refers to the problem of identifying the state of a system using sensor mea-
surements and a prior model of the system to be estimated. In the context of robotics, when the state to be estimated
is the location of the robot, the problem is called localization; when the state is the location of landmarks in the
environment, the problem is called mapping; when the state include both locations of the robot and landmarks, the
problem is called simultaneous localization and mapping (SLAM). In this project, we will focus exclusively on the
problem of localization.

1.1 Problem Formulation

In a state estimation problem, we have the state vector x ∈ Rn that we want to estimate, the input vector u ∈ Rm,
the output vector y ∈ Rp, the dynamics model g : Rn × Rm × Rn → Rn of the system with a process noise w ∈ Rn,
and a measurement model h : Rn × Rp → Rp of the sensors with a measurement noise v ∈ Rp.

In this project, we only consider discrete-time systems. As such, the system under consideration may be written
as follows:

x[0] = x0,

x[t+ 1] = g(x[t],u[t],w[t]),

y[t] = h(x[t],v[t]),

(1)

for some initial state x0 and t ≥ 0.
Provided with a sequence of outputs (y[0], . . . ,y[t]) and sequence of inputs (u[0], . . . ,u[t− 1]), we want to find the

sequence of state estimates (x̂[0], . . . , x̂[t]) such that it is as close to the true state sequence (x[0], . . . ,x[t]) as possible.
Note that here we use the hat notation, ·̂, to distinguish an estimate of the state x̂ from the true state x. Ideally, we
want |x− x̂| = 0.

For this project, we use the unicycle model as per the Equation 13.14 of [2]:

x :=


ϕ
x
y
θL
θR

 , u :=

[
uL

uR

]
,

ẋ = f(x,u) :=
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[
uL

uR

]
,

(2)

where r is the radius of the robot wheels, 2d is the wheel base, ϕ is robot orientation, x and y are robot 2D location,
θL and θR are the rolling angles of the left and right wheels, and uL and uR are the rotation speeds of the left and
right wheels. The unicycle model is illustrated in Figure 1.

Figure 1: Illustration of an unicycle robot [2].

Note that dynamics model f(·) defined in Equation (2) is in continuous time. In order to perform state estimation,
we will need to approximate the continuous-time dynamics model with a discrete-time model. In this project, we use
the following surrogate discrete-time model based on forward Euler method:

x[t+ 1] = x[t] + f(x[t],u[t]) ·∆t, (3)

where ∆t > 0 is some small sampling time interval.
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1.2 Dead Reckoning

We begin with dead reckoning method, a classical localization method that dates back to the early ages of navigation.
The term dead reckoning refers to the method of using only the dynamics model, the input sequence, and the

initial state to estimate the state evolution of the system. The dynamics model can be written as

g(x,u) = x+ f(x,u) ·∆t, (4)

with process noise w assumed to be zero. Measurement model h is irrelevant here, since it does not use any sensor
measurements. The algorithm of dead reckoning method is described in Algorithm 1.

Algorithm 1 Dead Reckoning

Inputs: x0, (u[0], . . . ,u[T − 1]),∆t, T
Outputs: x̂[0], . . . , x̂[T ]

1: t← 0
2: x̂[t]← x0

3: while t ≤ T − 1 do
4: x̂[t+ 1]← g(x̂[t],u[t])
5: t← t+ 1
6: end while
7: return x̂[t] for t = 0, . . . , T

The key assumption of dead reckoning method is that the process noise w remains identically zero throughout time.
However, this is hardly true in real world. With time, the errors due to the nonzero noise w accumulate, eventually
rendering dead reckoning estimates too erroneous to be useful.

This error accumulation problem is analogous to the robustness issue of feedforward control. Just like what we
have done in PID control, we can improve the robustness issue using the idea of feedback. In the context of estimation
theory, feedback amounts to using sensor measurements to improve estimation accuracy. To this end, in the next
section we introduce the celebrated Kalman filter.

1.3 Kalman Filter

The drawback of dead reckoning leads us to Kalman filter, an early hallmark of estimation theory developed by
Kalman and others in 1960. Unlike dead reckoning, Kalman filter attempts to correct error accumulation by using
sensor measurements.

Kalman filter is known as the optimal estimator for linear systems with additative Gaussian noises, as elaborated in
Chapter 3.3.4 of [1]. Specifically, dynamics model g(·) and measurement model h(·) should be linear. Process noise and
measurement noise should be normally distributed, that is, w ∼ N (0,Q),v ∼ N (0,R) for some covariance matrices
Q ∈ Rn×n,R ∈ Rp×p. Note that we always assume that w and v have zero means because any nonzero means in the
noise terms should be considered as part of the models.

Unfortunately, we cannot apply Kalman filter to our unicycle robot in the most general way because the unicycle
model (2) is nonlinear. For learning purpose, we assume in this part of the project that the robot heading ϕ is fixed
at π/4, i.e. ϕ := π/4. This renders our system dynamics linear. Furthermore, let’s assume that we have some noisy
measurements on x and y. Consequently, we can write the dynamics model and measurement model can as follows:

x :=


x
y
θL
θR

 , u :=

[
uL

uR

]
,

with dynamics model

x[t+ 1] = g(x[t],u[t],w[t]) := Ax[t] +Bu[t] +w[t] = I · x[t] +


r
2 cosϕ

r
2 cosϕ

r
2 sinϕ

r
2 sinϕ

1 0
0 1

∆t · u[t] +w[t], (5)

and measurement model

y[t] = h(x[t],v[t]) := Cx[t] + v[t] =

[
1 0 0 0
0 1 0 0

]
x[t] + v[t]. (6)
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Algorithm 2 Kalman Filter

Inputs: x0, (u[0], . . . ,u[T − 1]), (y[0], . . . ,y[T ]),∆t, T,A,B,C,Q,R,P0

Outputs: x̂[0], . . . , x̂[T ]

1: t← 0
2: x̂[t]← x0

3: P [t]← P0

4: while t ≤ T − 1 do
5: x̂[t+ 1 | t]← Ax̂[t] +Bu[t] (state extrapolation)
6: P [t+ 1 | t]← AP [t]A⊤ +Q (covariance extrapolation)

7: K[t+ 1]← P [t+ 1 | t]C⊤ (
CP [t+ 1 | t]C⊤ +R

)−1
(Kalman gain)

8: x̂[t+ 1]← x̂[t+ 1 | t] +K[t+ 1] (y[t+ 1]−Cx̂[t+ 1 | t]) (state update)
9: P [t+ 1]← (I −K[t+ 1]C)P [t+ 1 | t] (covariance update)

10: t← t+ 1
11: end while
12: return x̂[t] for t = 0, . . . , T

With the dynamics model and measurement model defined above, we are ready to present the Kalman filter
algorithm in Algorithm 2. For a classical probablistic derivation of the method, please refer to Chapter 3.3.3 of [1].
Note that covariance matrices Q,R and P0 are given as additional inputs of the algorithm. Note that Q,R and P
are often written as Σw,Σv, and Σ, respectively, as you may have seen in lectures and homeworks. You will need to
search for a combination of Q,R and P0 that produces accurate state estimation.

As discussed before, Kalman filter only deals with systems of linear dynamics and measurement models. As most of
the robotic applications are nonlinear, such as our unicycle robots, the original form of Kalman filter is quite limited.
Next, we introduce extended Kalman filter, an extension to Kalman filter that can be applied to nonlinear systems.

1.4 Extended Kalman Filter

Shortly after the development of Kalman filter, scientists at NASA developed extended Kalman filter (EKF) to solve
nonlinear estimation problems for controlling rockets. EKF deals with nonlinearity in the systems by means of first-
order approximation, i.e., linearization.

Recall that so far the only nonlinear component in the unicycle robot resides in the dynamics model

g(x,u) = x+ f(x,u) ·∆t. (7)

Linearizing system (7) around some point (x∗,u∗), we have

g(x,u) = g(x∗,u∗) +
∂g

∂x

∣∣∣∣
(x∗,u∗)

(x− x∗) +
∂g

∂u

∣∣∣∣
(x∗,u∗)

(u− u∗) + H.O.T.

≈ Ā(x∗,u∗)x+ B̄(x∗,u∗)u+E(x∗,u∗),

where

Ā(x∗,u∗) :=
∂g

∂x

∣∣∣∣
(x∗,u∗)

, B̄(x∗,u∗) :=
∂g

∂u

∣∣∣∣
(x∗,u∗)

, E(x∗,u∗) := g(x∗,u∗)− Ā(x∗,u∗)x∗ − B̄(x∗,u∗)u∗.

Because the nonlinear dynamics g(·) behaves similarly to the linear system Ā(x∗,u∗)x+ B̄(x∗,u∗)u+E(x∗,u∗) near
the point (x∗,u∗), we can use the surrogate linear system to approximate the original nonlinear system.

In previous section, we have a linear measurement model in Eqaution (6). With the power of linearization, we need
not limit ourselves to linear measurement model. Let us try the following new nonlinear measurement model

h(x) =

[√
(x+ − x)2 + (y+ − y)2

arctan
(

y+−y
x+−x

) ]
, (8)

where (x+, y+) := (0.5, 0.5) is some known location of a landmark, the square root term
√
· is the distance to the

landmark, and the term arctan(·) is the relative bearing to the landmark.
Once again, we can perform first-order approximation to the nonlinear measurement model h(·) to obtain the a

linear surrogate model at any given point.
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Algorithm 3 Extended Kalman Filter

Inputs: x0, (u[0], . . . ,u[T − 1]), (y[0], . . . ,y[T ]),∆t, T,A,B,C,Q,R,P0

Outputs: x̂[0], . . . , x̂[T ]

1: t← 0
2: x̂[t]← x0

3: P [t]← P0

4: while t ≤ T − 1 do
5: x̂[t+ 1 | t]← g(x̂[t],u[t]) (state extrapolation)

6: A[t+ 1]← ∂g
∂x

∣∣∣
(x̂[t],u[t])

(dynamics linearization)

7: P [t+ 1 | t]← A[t+ 1]P [t]A⊤[t+ 1] +Q (covariance extrapolation)
8: C[t+ 1]← ∂h

∂x

∣∣
x̂[t+1|t] (measurement linearization)

9: K[t+ 1]← P [t+ 1 | t]C[t+ 1]⊤
(
C[t+ 1]P [t+ 1 | t]C[t+ 1]⊤ +R

)−1
(Kalman gain)

10: x̂[t+ 1]← x̂[t+ 1 | t] +K[t+ 1] (y[t+ 1]− h(x̂[t+ 1 | t])) (state update)
11: P [t+ 1]← (I −K[t+ 1]C[t+ 1])P [t+ 1 | t] (covariance update)
12: t← t+ 1
13: end while
14: return x̂[t] for t = 0, . . . , T

Integrating linearization with original Kalman filter algorithm, we obtain the EKF algorithm, as described in
Algorithm 3. Note that the only difference between Kalman filter and EKF is the introduction of dynamics linearization
and measurement linearization steps.

Unlike Kalman filter, which is the provably optimal estimator for linear systems with Gaussian noises, EKF
unfortunately has no optimality guarantee. In practice, people find it works well for a wide range of applications, but
there is no guarantee that it will work well for your problem. To address the shortcomings of Kalman filter and EKF,
people have proposed many other estimation methods, such as the well-known particle filter and receding horizon
estimation. A complete treatment of these advanced methods is beyond the scope of this project. If you are interested
in those topics, we recommend you to check out Chapter 4 of [1] and Chapter 4 of [3].

2 Project Tasks

In this project, you will implement the three estimation algorithms: dead reckoning, Kalman filter, and EKF. In the
starter code, you are given an unicycle simulator. The simulator code is obfuscated to emulate the real-world setting.
Your job is to implement the three algorithms using only standard python libraries, i.e., numpy, sympy, and matplotlib.
We provide you with x0, (u[0], . . . ,u[T − 1]), (y[0], . . . ,y[T ]),∆t, T , but you will need to calculate the A,B, and C.
For Kalman filter and EKF, you will also need to fine tune Q,R, and P0.

3 Deliverables

As before, we expect you to deliver a report on your findings to desmonstrate your undestanding in the subjects covered
in this project. The purpose of these project reports are to prepare you for conference-style paper writing. Please
format your report using the IEEE two-column conference template. In your report, make sure you have included the
following content.

1. Abstract: An abstract, of at most 150 words, describing what you did and what results you achieved.

2. Methods: Explain in detail your approach towards each of the three estimators, making sure to address the
following questions.

(a) For dead reckoning, what is the theoretical motivation behind Equation (4) from the perspective of ordinary
differential equations? Can we do better than that? (∼ 1 column)

(b) For Kalman filter, what is the physical intuition behind Q,R and P0? How did you fine tune those
parameters? Would you do this differently if you were to do this on a real robot without access to ground
truth? (∼ 2 columns)
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(c) For EKF, which technique do we use to address the problem of nonlinearity? What is the limitation of that
technique? Can you mitigate the observed limitation?

Bonus: If you have implemented EKF on a real turtlebot, describe your process model and measurement
model and comment on how did you acquire group truth. (∼ 1-2 columns)

3. Experimental Results: Summarize the performance of each of the estimators on each scenario, using both words
and figures. (∼ 1 column, plus figures)

(a) Summarize the performance of the three algorithms in a table. In the table, make sure to include quantitative
measurements on estimation accuracy and per-step computational running time.

(b) For each estimation task, provide a set of plots of the estimates x̂ compared with the ground truth x.

(c) For each estimation task, provide of a plot of the estimated trajectory compare with the ground truth
trajectory.

(d) Bonus: If you have implemented EKF on a real turtlebot, provide a plot of the estimated trajectory overlaid
with the “true” trajectory.

Remember that each table or figure should come with a detailed caption. An informed reader should be able to
understand the table or figure without having to read the paper at all.

4. Discussion: (∼ 1-2 columns)

(a) Discuss the performance of each estimator. What worked, what didn’t, and why?

(b) Compare and contrast the performance of the estimators against one another. When would you use each
type of estimator? How might you improve them?

(c) Bonus: If you have implemented EKF on a real turtlebot, discuss what lessons have you learned from doing
it in the real-world setting.

5. Bibliography: A bibliography section citing any resources you used. This should include any resources you used
from outside this class. Please use the IEEE citation format.

6. Appendix:

(a) GitHub Link: Provide the link to your GitHub classroom repo. Simply push your code to the private
repository that was created for your team, and we will be able to see any changes you push to your
assignment repository.

(b) Bonus: What do you think the learning goals of this assignment are? How effective was this assignment
at fostering those learning goals for you? How can the lab documentation and starter code be improved?
We are especially looking for any comments you have regarding the pedagogical success of the assignment.

7. Page Limit: Reports are limited to 6 pages, not including the bibliography or appendix.

4 Getting Started

Create a new ROS workspace to store your code for this project. Remember to build and source your workspace after
you download the starter code.

4.1 GitHub Classroom

For projects in this class, we will be using GitHub Classroom. To access the starter code, simply head over to the
Project 3 assignment page to accept the assignment. If you are asked to associate yourself with a school identifier,
just click “Skip to the next step.”

You should now be asked to create a team or join from a list of existing teams. If one of your teammates has
already created a team, you should join that team instead of creating a new one. After you have joined a team, you
will not be able to switch teams by yourself. If you make a mistake or something else comes up that requires you to
switch teams, let us know.

Your team should now have a private project repository located at https://github.com/ucb-ee106-classrooms/project-
3-your-team-name.

6

https://pitt.libguides.com/citationhelp/ieee
https://classroom.github.com/a/BSRKP6x8


4.2 Pulling Starter Code

If there are any updates to the starter code that you wish to pull you may do so with the commands.

cd your-repo

git remote add public https://github.com/ucb-ee106/proj3_pkg.git

git pull public main

4.3 Setup environment

You can install all the required packages by running the following command.

pip install -r -U requirements.txt

5 Scoring

The project is scored out of 80 points with 10 additional points awarded if you have completed the bonus task.

Table 1: Point Allocation for Project 3
Section Points
Page Limit 5
Figures: Quality and Readability 5
Abstract 5
Methods: Dead Reckoning 5
Methods: Kalman Filter 10
Methods: Extended Kalman Filter 10
Results 20
Discussion 10
Bibliography 5
Code 5
Total 80
Bonus* 10

6 Submission

You will submit your writeup on Gradescope and push your code to GitHub Classroom. Only one submission is needed
per group. Please add your group mates as collaborators on both GitHub and Gradescope. Your code will be checked
for plagiarism, so please submit your own work with proper citations.

7 Improvements

If you notice any typos or things in this document or the starter code which you think we should change, please let us
know. Next years’ students will thank you.
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