EECS C106B Week 1 Lab

First lab section wooooo!!!

Agenda

Introduction

Meet your classmates! (and potential project-mates)

Lab Section Logistics

Info about paper presentation assignment

Project 0 Intro

Some relevant info for Project 0

Project 1A Intro

Some relevant info for Project 1A

Free Time

Meet your classmates! (and potential project-mates)

Teaching Team

Tarun Amarnath Head TA - Admin Content & Lab TA

Massimiliano de Sa Head TA - Content

Han Nguyen Head TA - Lab

Fangyu Wu Lab TA

Welcome to Lab Section!

Lab sections are for:

- Paper presentations
- Project introductions

Lab section etiquette:

- Show up (sections are synchronous and not recorded)
- Come prepared to discuss the papers for the week
- Be respectful

Paper Presentations

- 1-2 paper presentations per week in lab section
- Explain your chosen paper in as simple terms as possible so others can understand it
- Sign-up sheet will open next week
 - Papers will complement ongoing lecture
 - o 1 paper **before** Spring Break
 - 1 paper after Spring Break
- Grade breakdown (5% total)
 - 4% for paper presentations (2% each)
 - 1% for participation in discussions

Presentation Logistics

- Present as group of 2* in the same lab section
 - Meet people who have the same interests as you
 - Doesn't have to be same partner for both presentations
- 10-15 mins for presentation
- 5-10 mins for questions/leading a discussion

^{*} Depending on the circumstances groups of 1 or 3 are ok but should be rare and approved by your TA first. Max 1 group of 3 per lab section.

Projects

- Prerequisites
 - Python and Linux commands
 - o Git/GitHub
 - ROS
- Groups of 2-3
 - At least one person should have completed 106A
- Completed mostly on your group's own time
 - Plan ahead!!!
- Present findings in conference paper format

Project 0

- Refresher on ROS
 - Basic commands and data structures
 - Turtlesim! Write your own controller!
- Publisher/Subscribers
- Find AR tags with a Camera
- Run basic scripts on Sawyer
- Don't worry about the Robot Usage Quiz for now

Project Goal

Implement closed-loop PD control on Sawyer and compare with the default Movelt! controller

*This is Baxter. We will be using Sawyer this semester!

Part A Tasks: Trajectories

- Define 3 trajectories
 - Linear
 - Circular
 - Polygonal
- For a given time t, return a
 - target SE(3) pose
 - target se(3) body velocity

- Analytically solve for smooth trajectories that start and end with 0 velocity
 - Finite difference approximates are not your friend

LinearTrajectory

LinearTrajectory evolution of end-effector's position.

LinearTrajectory evolution of end-effector's translational body-frame velocity.

CircularTrajectory

CircularTrajectory evolution of end-effector's position.

CircularTrajectory evolution of end-effector's translational body-frame velocity.

PolygonalTrajectory

PolygonalTrajectory evolution of end-effector's position.

PolygonalTrajectory evolution of end-effector's translational body-frame velocity.

Part A Tasks: Controllers

Jointspace Velocity (Done)

Given: desired joint positions, velocities, and accelerations **Produce:** control input as joint velocities

Workspace Velocity

Given: desired workspace positions, velocities, and accelerations **Produce:** control input as joint velocities

Jointspace Torque

Given: desired joint positions, velocities, and accelerations **Produce:** control input as joint torques

Deliverables

Manipulator simulation videos of:

- Workspace Line
- Workspace Circle
- Workspace Polygon
- Torque Line
- Torque Circle
- Torque Polygon

Submit videos as a link to a Google Drive folder

Advice

- Research is very open ended, you may have to try a lot of things and see what works
- Save early, save often
 - Properly using git can save you a lot of time and frustration - ask if you need help!
- You are not alone
 - Use your group effectively (pair program, split up tasks, etc.)
 - Ask and answer questions on Ed, Discord
 - Go to OH, Lab Section for staff help

Timeline of the Near Future

Complete Project 0

This will give you a good refresher on ROS. Also, find project partners!

Homework 1

Due Tues 1/24

Sign Up for Papers

Next week

Project 1A

Due Tues 1/31