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Nonholonomic Integrator

Consider the so-called nonholonomic integrator:

q̇1 = u1
q̇2 = u2
q̇3 = q1u2−q2u1

This system has

g1 =

 1
0
−q2

 g2 =

 0
1
q1

 [g1,g2] =

 0
0
2


This system is written by dropping the dt as

dq3 = q1dq2−q2dq1



Optimal Control
The optimal input minimizing the cost function∫ 1

0
||u(t)||2dt

from an initial q(0) to a final q(1) was shown by Brockett to be
sinusoidal. The frequency λ of the optimal inout is striking when
q1(0) = q1(1) and q2(0) = q2(1) to be 2nπ with n = 0,±1,±2, . . ..
The generalization of this system to m > 2 inputs is stated as a
control system on q ∈ℜm×Y ∈ so(m) as

q̇ = u
Ẏ = quT −uqT

If q(0) = q(1) and Y (1) ∈ so(m) is given then it can be shown
that the optimal input is multiples of 2π, that is

2π.2, . . . ,2π
m
2 m even

2π,2π.3, . . . ,2π
m−1

2 m odd
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Definition of a 1-chain form

The preceding discussion motivates some generalizations. First the
non-holonomic integrator extended to dimension n

q̇1 = u1
q̇2 = u2
q̇3 = q2u1
q̇4 = q3u1

...
q̇n = qn−1u1

These are called chained form or Goursat normal form systems.



Controllability of a One Chain system

[g1,g2] =



0
0
−1
0
0
...
0


[g1, [. . . , [g1, k times, g2] . . .]] =



0
...
0

(−1)k

0
...
0


By way of notation we define

adg1g2 = [g1,g2] adk+1
g1 = [g1,adk

g1g2]

Thus
Span{g1,g2,adk

g1g2,k = 1, . . . ,n−2}= ℜ
n



Chained Form Systems and Feedback Linearization
Consider the chained form system system just defined and set
u1 = 1. Then, q1 = t and we have

q̇2 = u2
q̇3 = q2
q̇4 = q3

...
q̇n = qn−1

This is precisely a linear system chain of integrators. More
generally given a control system

ẋ = g1(x)u1 + g2(x)u2

when is it possible to transform this system into linear form with
u1 = 1, The answer is

{g1,adg1g2,ad2
g1g2, . . . ,adn−3

g1 g2} invol
{g1,adg1g2,ad2

g1g2, . . . ,adn−3
g1 g2,adn−2

g1 g2} dim = n−1

Note that only n−1 variables are linearized, the nth is just t.



Rectification using sinusoids
In analogy with the non-holonomic integrator first steer q1,q2.
Then use ui (t) = a sin2πt, u2(t) = b cos2πt to steer z3.

q1(t) = q1(0)− a
/2π( cos2πt−1)

q2(t) = q2(0) + b
2π

sin2πt
q3(t) = q3(0) +

∫ t
0

ab
2π

sin2 2πt

In one second q1(1) = q1(0),q2(1) = q2(0). But because
sin2 2πt = 1−cos2.2πt

2 it follows that

q3(t) = q3(0) + 1
2

ab
2π

(t− sin2.2πt
2.2π

)

Because of the constant term (rectification) in the integrand after
one second, we get an increase in q3:

q3(1) = q3(0) + 1
2

ab
2π



Steering Chained Form Systems

We use sinusoidal signals u1(t) = sin2πt and u2 = cos2πkt to steer
qk at t = 1 without changing the preceding qi , i < k for 1 second.



Steering Calculation
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Steering the Hopper

With q = (ψ, l ,θ)T , the control system of the hopper is

q̇ =

 1
0

− m(l+d)2

I+m(l+d)2

u1 +

 0
1
0

u2

If you define α = θ + md2

I+md2 ψ, we get for suitably defined f

α̇ := f (l)u1



Fourier Technique

Now choose
u1 = a1 sin(2πt)
u2 = a2 cos(2πt)

By Fourier series after integrating for l we get

f (l) = f ( a2
2π

sin2πt) = β1(a2)sin2πt + β2(a2)sin4πt + · · ·

Using this in the equation for α̇ gives

α(1)−α(0) = 1
2a1β1

After 1 second, ψ, l are back to their initial values but α has
changed by 1

2a1β1(α2)! By suitably choosing a1,a2 we can make
this be π radians (a flip).!



Steering the kinematic car
The control systems for the car is

ẋ = cosθu1
ẏ = sinθu1
θ̇ = 1

l tanφu1
φ̇ = u2

Change coordinates z1 = x ,z2 = φ ,z3 = sinθ ,z4 = y , inputs
v1 = cosθu1,v2 = u2 to get

ż1 = v1
ż2 = v2
ż3 = 1

l tanz2v1
ż4 = z2√

1−z2
3
v2

Now the linear terms in the last two equations match those of the
one chain system and it can be steered using the algorithm with
the Fourier series method and double frequency sinusoids



Parking a Car
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Conversion to One Chained Form
Given a control system of the form in ℜn with two inputs

q̇ = g1(q)u1 + g2(q)u2

If (and only if) the folowing three distributions are regular
(constant dimension) and involutive

∆0 = span{g1,g2,adg1g2, . . . ,adn−2
g1 g2}= ℜn

∆1 = span{g2,adg1g2, . . . ,adn−2
g1 g2}

∆2 = span{g2,adg1g2, . . . ,adn−3
g1 g2}

then there exists a choice of coordinates z1(q), . . . ,zn(q) and
inputs v = α(q) + β (q)u auch that

ż1 = v1
ż2 = v2
ż3 = z2v1

...
żn = zn−1v1



Feedback Linearization and Chained Forms
Amazingly chained form systems are closely related to feedback
linearization. This is how you see this. If you set u1 = 1 we get a
single input control system

ẋ = g1(x) + g2(x)u2

The conditions for full state feedback linearization of this system
are

∆0 = span{g1,g2,adg1g2, . . . ,adn−2
g1 g2}= ℜn

∆1 = span{g2,adg1g2, . . . ,adn−2
g1 g2}

Indeed if we define ∆1dh and define
w1 = h(x),z2 = Lg1h(x), . . . ,wn = Ln−1

g1 h(x) we can check that
when we apply this to the original control system without u1 frozen
at 1.

ẇ1 = w2u1
ẇ2 = w3u1
ẇ3 = w4u1

...
ẇn = Lg1Ln−1

g2 h(x)u1 + Ln
g2h(x)u2

in the first step, we have used
ẇ1 = Lg1hu1 + Lg2hu2

and used ∆dh = 0 to get that dhg2 = Lg2h = 0. The same
calculation is repeated at each step.



Feedback Linearization and Chained Forms

if you set v2 = u1 and v1 = Lg1Ln−1
g2 u1−Ln

g2hu2, we get

ẇ1 = w2v2
ẇ2 = w3v2
ẇ3 = w4v2

...
ẇn = v1

This is exactly the chained form with the numbering of the states
inverted! Thus, if you set zi = wn−i , we get exactly the chained
form solution.



Conversion to One Chained form

Amazingly, all of the examples: so far: cars, unicycles, pennies
with two inputs can be converted into a single chain form eactlly
and steered as above !!
Amazingly so is the the Car with N Trailers

The state space q = (x ,y ,φ ,θ0, . . . ,θN)T ∈ℜN+4. The coordinates
z1,z2 in the chained form are the x ,y coordinates of the last trailer
wheel base!!



Multi Chained Forms
When there are m > 3 inputs for

q̇ = g1(q)u1 + g2(q)u2 + · · ·+ gm(q)um

there are analogous necessary and sufficient conditions for the
conversion into m−1 chains. For example, the firetruck. The
driver in front has two inputs: drive and steer and the one at the
back of the ladder can steer. This can be converted into a two
chain system.



Conversion to Multi-Chained Form

In analogy to the two input case, we may ask if it is possible to
find one variable with new input v1 = 1 and have (m−1) other
chains of linear inputs. The general solution to this requires some
work but you can already see thatif u1 = v1 = 1, then we can treat
g1 like the drift vector field and we would have

q̇ = g1(q) + g2(q)u2 + · · ·+ gm(q)um

and the involutivity conditions would be for the filtration

∆1 = {g2, . . . ,gm}
∆2 = {g2, . . .gm,adg1g2, . . . ,adg1g2}
∆3 = {g2, . . . ,gm,adg1g2, . . . ,adg1gm,ad2

g1g2, . . . ,ad2
g1gm}

...

This is generalizable as discussed in Chapter 13 if we do not want
to legislate that u1 = 1.



Thank you for your attention. Questions?

Shankar Sastry
sastry@coe.berkeley.edu
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