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Model-based Optimal Control

R. Deits, 6th Workshop on Legged Robots ICRA'22



Deep Reinforcement Learning

Z. Li et al., Hybrid Robotics Lab



Deep Reinforcement Learning

Agility Robotics



Your first design decision:
Model-based (Optimal) Control? or
Deep Reinforcement Learning?



Review of last lecture

System

Objective

Dynamic Programming 
(DP) Principle

Optimal Control Reinforcement Learning

state control state action

discount stage cost



In the end, if both methods are solving the same 
problem, why should the choice of method matter?
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In the end, if both methods are solving the same 
problem, why should the choice of method matter?

My take:
A lot of model-based optimal control methods aim at obtaining solutions
as close as possible to the “global and deterministic” optimal solution, 
within their computational limits.

vs

A lot of deep reinforcement learning methods aim at obtaining
generalizable, albeit suboptimal, solutions.



Dynamics of Legged Robots



(Simplified) Dynamic model of legged robots
• Simple hybrid automaton: One continuous dynamics mode with one reset map.

𝒮𝒮!

𝒪

Hybrid periodic
orbit

=: Reset Map
(Impact Dynamics & Switching Coordinates)

Switching
surface



(Simplified) Dynamic model of legged robots
• Simple hybrid automaton: One continuous dynamics mode with one reset map.

=: Reset Map
(Impact Dynamics & Switching Coordinates)

Switching
surface

(Constrained)
Equations of motion
+ Internal dynamics

Contact Dynamics



Constrained Equations of Motion

Mass inertia Coriollis Gravity Input
mapping

Ground reaction 
(constraining) force

EoM: Constraint:

Constrained EoM:



Internal Dynamics

• Dynamics between commands and 
actual motor torques
• Motor dynamics
• Delays in control signals introduced by 

multiple hardware and software layers
• Low-level controller dynamics, etc.

Y. Sim & J. Ramos, ICRA 2021

• Frictions, damping, compliance in 
mechanical components

C. Gehring et al., RA Magazine, 2016
J. Hwangbo et al., 

Science Robotics, 2019



Contact Dynamics – Impact and friction

• Various impact dynamics
• Rigid Impact
• Elastic Impact
• Compliant ground impact

• Various modes of contact
• Stick
• Slip
• Open contact

• Various locations of contact

1 2

3
𝑥! = ∆"#(𝑥$) 𝑖𝑗



Contact Dynamics – Impact and friction

• Single Contact:

J. Hwangbo, Large-scale policy training for robots, ICRA’21 Workshop



Contact Dynamics – Impact and friction

• Multi Contact:

Accuracy vs Computational Efficiency



Constrained EoM
Internal Dynamics
Contact Dynamics

Nonlinear dynamics
Model uncertainty

Hybrid/Combinatorial dynamics



Model-based Optimal Control



Optimal control as an optimization problem.

s.t.

𝑥! ∈ 𝑋
𝑢! ∈ 𝑈 for k = 1,⋯ , 𝑇
𝑥" ∈ 𝑋", 𝑥# ∈ 𝑋#

𝑇

Dynamics constraint



Optimization-based approaches

• Main benefit
• Can employ rich set of numerical optimization 

algorithms to solve optimal control.

• Main caveat
• The resulting problem is in general nonconvex, 

and there might be no guarantee of finding 
globally optimal solution.

• In general, the optimization problem in its 
primary form is not computationally tractable.

s.t.

𝑥! ∈ 𝑋
𝑢! ∈ 𝑈 for k = 1,⋯ , 𝑇
𝑥" ∈ 𝑋", 𝑥# ∈ 𝑋#

𝑇



How to approach finding good solutions?
1. How to deal with hybrid dynamics (mode switches)?

1. Separate out mode sequence decision.
2. Use different dynamics representation that 

captures mode switches implicitly.
• Complementarity-based formulation1

• Gluing the dynamics in a new topology2

s.t.

𝑥! ∈ 𝑋
𝑢! ∈ 𝑈 for k = 1,⋯ , 𝑇
𝑥" ∈ 𝑋", 𝑥# ∈ 𝑋#

𝑇

1. M. Posa et al., IJRR 2014
2. Westenbroek et al., IFAC 2021



How to approach finding good solutions?
2. Use simplified dynamics

• Linear dynamics:
• The dynamics constraint becomes linear.
• Linearization error
• Fits nicely to Model Predictive Control

s.t.

𝑥! ∈ 𝑋
𝑢! ∈ 𝑈 for k = 1,⋯ , 𝑇
𝑥" ∈ 𝑋", 𝑥# ∈ 𝑋#

𝑇



How to approach finding good solutions?
2. Use simplified dynamics

• Use reduced order model:
• Reducing the complexity of the problem by 

simplifying the dynamics and reducing the 
state variables.

• The resulting solution might actually not be 
dynamically feasible.

• Separate low-level controllers might be 
necessary to track the solution.

s.t.

𝑥! ∈ 𝑋
𝑢! ∈ 𝑈 for k = 1,⋯ , 𝑇
𝑥" ∈ 𝑋", 𝑥# ∈ 𝑋#

𝑇



Using reduced order model

K. Green et al., RA-L 2021 P.Wensing, IROS 2022 Workshop



How to approach finding good solutions?
3. Convexify the problem.

s.t.

𝑥! ∈ 𝑋
𝑢! ∈ 𝑈 for k = 1,⋯ , 𝑇
𝑥" ∈ 𝑋", 𝑥# ∈ 𝑋#

𝑇

• Lossless convexification
• Pontryagin’s maximum principle1

• Hopf-lax formula2

• Works only for special cases.

• Sequential convexification
• Differential Dynamic Programming3

• Trust-region-based algorithms1

• Can get stuck at locally optimal solutions.

1. D. Malyuta et al., CSM 2022
2. D. Lee et al., TAC 2022

3. H. Li, P. Wensing, RAL 2021



How to approach finding good solutions?
4. Start with good initial guess.
• A good initial guess can be used to warm-start many numerical 

optimization algorithms.
• It is helpful to converge to better, if not global, optimal solutions.



Summary of Model-based Optimal Control

• Explicit dynamics (models) and constraints
• Explicit solutions

• state trajectory
• optimal control signal / policy

• Most methods are about how to balance computational 
tractability & good approximation.
• Simplified models / good representation of dynamics
• Convexification
• Warm-start

s.t.

𝑥! ∈ 𝑋
𝑢! ∈ 𝑈 for k = 1,⋯ , 𝑇
𝑥" ∈ 𝑋", 𝑥# ∈ 𝑋#

𝑇



Drawbacks

1. Lack of generalizability: Each system has its own optimization problem. 
Thus, hard to find generalizable approaches.

2. Lack of robustness: Resulting optimal solutions are often not robust 
enough. They are good solutions only when the models are good 
enough.

3. Lack of computational efficiency: Solving the optimization might not be 
fast enough for the online execution.



Survey paper – P. Wensing et al., Optimization-Based 
Control for Dynamic Legged Robots



Part 2:
Deep Reinforcement Learning &
Combining Model-based optimal control with Deep RL
(Bike Zhang)


