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Your first design decision:

Model-based (Optimal) Control? or
Deep Reinforcement Learning?




Review of last lecture

Optimal Control Reinforcement Learning
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In the end, 1f both methods are solving the same
problem, why should the choice of method matter?
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In the end, 1f both methods are solving the same
problem, why should the choice of method matter?

My take:
A lot of model-based optimal control methods aim at obtaining solutions
as close as possible to the “global and deterministic” optimal solution,

within their computational limits.

VS

A lot of deep reinforcement learning methods aim at obtaining
generalizable, albeit suboptimal, solutions.




Dynamics of Legged Robots




(Simplified) Dynamic model of legged robots

« Simple hybrid automaton: One continuous dynamics mode with one reset map.
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(Simplified) Dynamic model of legged robots

« Simple hybrid automaton: One continuous dynamics mode with one reset map.

(Constrained)

Equations of motion
+ Internal dynamics

x+=A(x_), x~ €8S
— —— » Contact Dynamics
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Constrained Equations of Motion

EoM: Constraint:

D(q)§+ C(g,4)d + G(q) = Bu+ J(g) ' A o
T T T 7 T J(@)q=0

Mass inertia Coriollis Gravity Input Ground reaction
mapping (constraining) force

Constrained EoM:




Internal Dynamics

Frictions, damping, compliance in

» Dynamics between commands and
mechanical components

actual motor torques

« Motor dynamics
« Delays in control signals introduced by

Energy Flow

Power

multiple hardware and software layers
« Low-level controller dynamics, etc. 5
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Fig. 1. Energy flow diagram of a robotic system showing the dissipation of
energy in actuators and transmissions. The energy conversions are always
accompanied by energy losses such as Joule heating or friction.
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Contact Dynamics — Impact and friction

 Various impact dynamics
* Rigid Impact

« Elastic Impact /7
 Compliant ground impact &= f(z,u)

« Various modes of contact

.+ Stick \\

T = fz(x,%

[

 Slip
* Open contact

xt = Alj(x_) )

« Various locations of contact
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Contact Dynamics — Impact and friction

» Single Contact:

Contact point dynamics
Aimp = MimpBVimp + ¢

What else do we know?

T

Complementarity condition:
(AVimp + Vimp)z2 0
A(AVimp + Vimp)z= 0

Friction cone:

Aimp,z = “J Atgmp.x + Atgmp,y

Contact energy minimization:

= 4




Contact Dynamics — Impact and friction

 Multi Contact:

‘ASIN 5 0 ganeral ngid-ody simulstor

Accuracy vs Computational Efficiency




Nonlinear dynamics

Constrained EoM »
Internal Dynamics - Model uncertainty

Contact Dynamics - Hybrid/Combinatorial dynamics




Model-based Optimal Control




Optimal control as an optimization problem.

T
min ¥ C\ Tk, Uk
u() 25 ( )

s.t. rr+1 = f(xk, ug) Dynamics constraint

XkEX
u, €U fork=1,---,T
X0 EXO,XT EXT




Optimization-based approaches

Trp+1 = f(Tr, uk)

X €X

u, €U fork=1,--,T
Xo € Xo, X1 € Xt

 Main benefit

« Can employ rich set of numerical optimization
algorithms to solve optimal control.

 Main caveat

« The resulting problem is in general nonconvex,

and there might be no guarantee of finding
globally optimal solution.

* In general, the optimization problem in its
primary form is not computationally tractable.




How to approach finding good solutions?
1. How to deal with hybrid dynamics (mode switches)?

1. Separate out mode sequence decision.

2. Use different dynamics representation that
= captures mode switches implicitly.
?}6?};)7 c(zk, uk) - Complementarity-based formulation’
s.t. Thi1 = f(ZEk;, ’U,k) ¢( Q) >0
X €EX A=0
u, €U fork=1,-,T d(q)' 1A =0.
X € Xo, X7 € X1 « Gluing the dynamics in a new topology?2

€ N
N R(G)

2. Westenbroek et al., IFAC 2021



How to approach finding good solutions?
2. Use simplified dynamics

* Linear dynamics:

- The dynamics constraint becomes linear.
* Linearization error

T
m(i?nykc(xk, g ) - Fits nicely to Model Predictive Control
“ k=0
B ‘ el ST
s.t. Tr+1 = f(xg, uk) . ?" e <

XkEX
u, €U fork=1,--,T
XO EXO,XT EXT




How to approach finding good solutions?
2. Use simplified dynamics

» Use reduced order model:
* Reducing the complexity of the problem by

simplifying the dynamics and reducing the
state variables.

* The resulting solution might actually not be
dynamically feasible.

s.t. Tht1 = flar, up) « Separate low-level controllers might be

Xk €X necessary to track the solution.
u, €U fork=1,--,T
XO (S Xo, xT € XT

min Y+l )




Using reduced order model

K. Green et al., RA-L 2021

Template model Full-order model
« Fast computation * Slow computation
« Simple motion Increasing details + Complex motion
« Limited disturbance rejection * Full performance envelope
EDIDIDIDIDIEDED IDID ID ID I I IS I e .
LIP. SLIP Rigid Body Centroidal Dynamics Whole-bpdy
' Model (Trunk) + Full kinematics Dynamics

N

P.Wensing, IROS 2022 Workshop




How to approach finding good solutions?
3. Convexify the problem.

 Lossless convexification
* Pontryagin’s maximum principle’
» Hopf-lax formula?

m(i?nykc(xk, W) « Works only for special cases.

Y k=0

AL - Sequential convexification
X e X

« Differential Dynamic Programming3
* Trust-region-based algorithms’
« Can get stuck at locally optimal solutions.

u, €U fork=1,--,T
XO EXO,XT EXT

1.

D. Malyuta et al., CSM 2022
2. D.Leeetal, TAC 2022
H. Li, P. Wensing, RAL 2021

3.




How to approach finding good solutions?
4. Start with good mitial guess.

A good initial guess can be used to warm-start many numerical
optimization algorithms.

* It is helpful to converge to better, if not global, optimal solutions.




Summary of Model-based Optimal Control

« Explicit dynamics (models) and constraints

T - :
: k  Explicit solutions
I&I?Z'V ok, u) - state trajectory

k=0  optimal control signal / policy
.t Tri1 = flar, ur) « Most methods are about how to balance computational
X, € X tractability & good approximation.
u, €U fork=1,---,T  Simplified models / good representation of dynamics
Xo € Xo, X7 € XT « Convexification

« Warm-start




Drawbacks

1. Lack of generalizability: Each system has its own optimization problem.
Thus, hard to find generalizable approaches.

2. Lack of robustness: Resulting optimal solutions are often not robust
enough. They are good solutions only when the models are good
enough.

3. Lack of computational efficiency: Solving the optimization might not be
fast enough for the online execution.
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Survey paper — P. Wensing et al., Optimization-Based
Control for Dynamic Legged Robots
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Part 2:

Deep Reinforcement Learning &

Combining Model-based optimal control with Deep RL
(Bike Zhang)




