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Trajectory Controller

b,
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desired trajectory (position,
velocity, acceleration)

desired state
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Equilibrium.
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Stability?
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Stability in the Sense of Lyapunov
“Stability i.s.L”

An equilibrium point X, of the system X = f(X) is stable in the sense of
Lyapunov if for any € > 0, there exists a value §(ty, €) > 0 such that if
Ix(tg,Xg) — Xc|| < 8 then [|x(¢t; ty, Xo) — X|| < eforallt > t,.

x(t),

X2a

A

» An equilibrium point is unstable if it is not stable i.s.L.

» The equilibrium point is uniformly stable i.s.L. if § = 6(¢).
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Stability i.s.L. is Weak
just by Itself

» Stability i.s.L. means that the system state will remain close to the
equilibrium point.

» Stability i.s.L. bounds how much the system state will fluctuate around
the equilibrium point.

Does not answer...
» Will it ever reach the equilibrium point?

» Will it stay at the equilibrium point for all future times?
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Asymptotic Stability

» An equilibrium point is asymptotically stable i.s.L. if it is:

1. Stable (i.s.L.)

For any € > 0, there exists a value §(ty, €) > 0 such that if
Ix(ty,Xg) — Xc|| < 8 then [|x(¢t;tg, Xo) — Xp|| < eforallt > t,.

2. Convergent
x(t; tg,Xp) = Xp ast — oo,
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Asymptotic Stability

» Note: Convergence alone does not necessarily imply (asymptotic)
stability! Why?

x(t)s

X2a

Still does not answer...
» How fast does it converge?
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Exponential Stability

An equilibrium point x, = 0 is exponentially stable if there exists
coefficient m = 0 and rate @ = 0 such that

x| < |lx,||me~*¢—to)
For all x,, in some ball around x, = 0.

x(t)s

Xe =0 Xe=[0 O]T
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Local vs Global

These are local definitions of stability about an equilibrium point.
> We were free to choose small § in order to start x, near x,.

We say an equilibrium point x, is globally stable if it is stable for all
initial conditions xj .
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Stability of LTI Systems

Linear-Time Invariant (LTI) systems:

X € R"?

X = AX
A € R™" constant

»An LTI system is asymptotically stable if and only if all the eigenvalues
of A have strictly negative real parts.

» For LTI systems, asymptotic stability & exponential stability.

» The system is marginally stable if and only if all the eigenvalues of A
have nonpositive real parts, at least one has zero real part, and every
eigenvalue with zero real parts has its algebraic multiplicity equal to it’s
geometric multiplicity.
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Control of a First Order System

Problem
o State X and input u o u is a velocity
o Kinematic model x = u
o Want to follow trajectory x4€S(¢)

General approach
o Define error e(t) = x9¢5(¢t) — x(t)
> Want e(t) to converge exponentially to 0

Strategy
o Find u such that e + K,e = 0

> If K, > 0 then e(t) = exp(—K,(t — ty)) e(to)
o u(t) = x9°5(t) + K,e(t)
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Control of a Second Order
System

Problem

o State X and input u - u is an acceleration
o Kinematic model X = u "

0.2

> Want to follow trajectory x9€5(t)

0.15

General approach 0.
> Define error e(t) = x95(¢t) — x(t) > 0.05
o Want e(t) to converge exponentially to O ’

-0.05

Strategy 0.1
o Find u such that e + Kde + er =0 0 0.1 0.2 03 0.4 0.5

o Pick some K, K; > 0
o u(t) = %9°5(t) + Kye(t) + Kye(t)
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Control for Trajectory Tracking

PD Control
> u(t) = x9°5(¢) + Ked) + Kye(®
° Proportional term (Kp) has a spring (capacitance) response

o Derivative term (.) has a dashpot (resistance) response

PID Control

s u(@® = x40 + KIS + Kpe(®) + Kifj €@z

° Integral term (.) makes steady state error goto 0

o Accounts for model error or disturbances

o PID control generates a third-order closed-loop system
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Control Gains
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Stereotyped 2" Order Response
&+ Kyé + Kye =0
& + 2{w,e + w,’e =0 A= —w,({ +i1—-12)

2.0
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i 7=0.1

1.5 =
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0 I 1211 3o 4o
wpt / rad

y(t)

For this simple example, can choose K, and K to get a desired damping ratio.
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Response to Disturbance
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PD Position Controller
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PD Controller for Z
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High K,
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High K,
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— Estimated
— Desired

tirmAa a1
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Manual Tuning
I S N

Rise Time Decrease Decrease
Overshoot Increase Decrease Increase
Settling Time - Decrease Increase
Steady-State Error Decrease - Eliminate

* “Iflincrease Kp, then
Rise Time will Decrease, and
Overshoot will Increase, and
Steady-State Error will Decrease.”
 These are only general guidelines for “typical systems.”
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Ziegler-Nichols Method

Heuristic method for PID gain tuning

Seth=KI=O

Increase K, until ultimate gain K;, where system starts to oscillate

Find oscillation period T}, at K,

I N e

Set gains according to:

0. 51(
PD 0.8K, K,T,/8 -
PID 0.6K, K,T,/8 2K, /T,
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Model-Based Control

PD and PID control laws applied to real systems
o mX(t) + bx(t) + kx(t) = u(t) «
o Performance will depend on the system dynamics

u is a force!
also, system dynamics!

° Need to tune gains to maximize performance

Model-based control law

o) - m (SO REOERGE®) + b(0) + x()

o Use PD (or PID) feedback to drive error to O 02

0.15

° Independent of the model

© Model-based component

o Cancels system dynamics 0

0.1

v 0.05

o Specific to the model 005

-0.1
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Model-Based Control

Advantages
o Decomposes control law model-dependent and model-independent part
° Model-independent gains will work for any system

Disadvantages
o If model parameters have errors then error will not go to 0

Original system

o mX(t) + bx(t) + kx(t) = u(t)

Our control law

o u(t) = m(xdes(t) + Kze(t) + Kye(t)) + bx(t) + kx(t)
Estimates f

Substitute to find total system dynamics

o

(e]

(e]

- &+ Kqe + K, e—(——l)x+—x+ux
m m

Right-hand side drives error away from 0!

(e]
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Model-Based Control

. ) m . b-b. k-k
° e+Kde+er = (j— 1)X+TX+TX
m m m
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Perfect model Imperfect model — 10% errors

If right-hand side is bounded then we can prove e(t) also bounded
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Quadrotor
Control




Planar Quadrotor Model
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Affine Nonlinear System

State X and input u

State equations X = f(x) + g(X)u

X4 0 0
Xs 0 0
. _ | %o 0 0 [,
X=10o |T|-mtsinx; 0 uz]
—g m~lcosx; 0O
0 0 I

° Nonlinear in the state
o Affine in the control input
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Linearized Dynamics

Nonlinear dynamics Linearized model
= _n sin(¢) Yy = _g¢
m (X} ul
. U _ Ul
£ = g+ L cos() 2E
m e
o ﬂ _ Uo
Equilibrium configuration Equilibrium hover condition
Yo q Yo, Zo
wofey o
0

Ui =MmMmg,Uzo = 0
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Nested Control Structure [ ¢

Uy
Ydess Zdes I
Ydess Zdes
Ydess Zdes A (pd 4 A
- es .
Position A Attitude
controller controller
\_ y, \_ y,

‘ YJZryrZ ‘ ¢,¢

\

Specified by the position controller, not the user

Works when inner (attitude) control loop runs much faster
(10x) than the outer (position) control loop
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Control Equations

Recall for a second order system € + K;e + K,e = 0

For any configuration variable g we have
commanded

\ U y
(éides - CI) + Kd,q(éldes - CI) + Kp,q(CIdes - Q) =0

! 1 L

actual (feedback)

specified

1/30/2020 FEEDBACK CONTROL
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Control Equations

Lateral dynamics Vertical dynamics
cYy=-g99 o= 4
o =22 "
Ixx
Desired attitude Z-position controller
° Pdes = _% ° up = m(Z;)
° Pges =0
° Pges =0

Attitude controller

° Uy = Ly,
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Control Equations

Control equations

U =m (Zdes + kd,z(zdes —z)+ kp,z(Zdes - Z))
Uy = Ixx ((.Bdes + kd,qb(d)des o ¢) + kp,qb(d)des o ¢))

1/.. . .
Ddes = Ty (ydes + kd,y(Ydes —y) + kp,y()’des - 3’))

* Three sets of PD gains.
e Systematically tune using step responses.
* Thrust

* Roll
* Position (depends on roll being well-tuned)
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Trajectory Tracking (in time)

Follow trajectory exactly

b,

Xdes (t)

/

desired trajectory (position,
velocity, acceleration)

€d = Xdes — X

(Xges — Xc) + kgeq + kye, =0
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Project

Make plots in your sandbox!

Run tests locally.

Gain tuning: Finding 12 magic numbers by trial and error won’t work.
How to judge controller quality.

Order of tuning the cascaded controller.

Choose reasonable trajectories.

Practical constraints: actuator limits.
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