Feedback Control

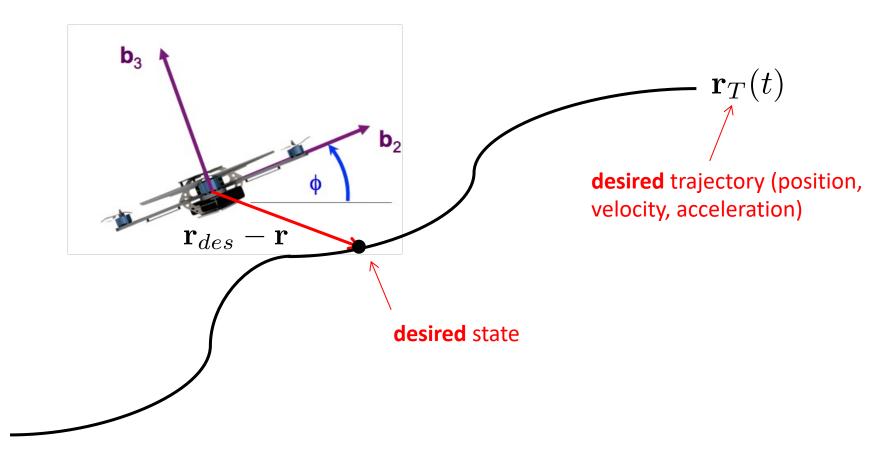
Vijay Kumar and James Paulos

ENGINEERING DESIRABLE SYSTEM DYNAMICS

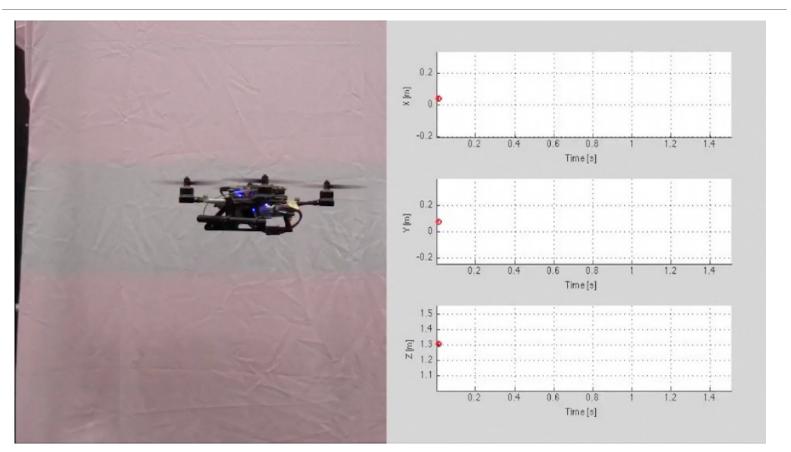
General Robotics, Automation, Sensing & Perception Lab

1/30/2020

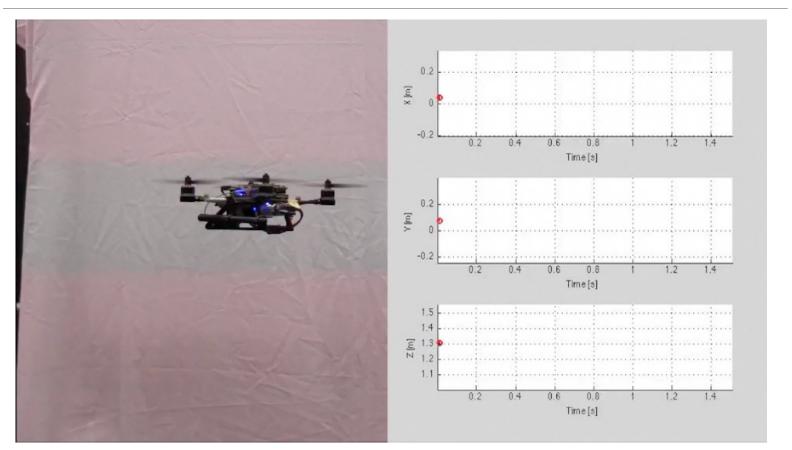
Trajectory Controller



Equilibrium.

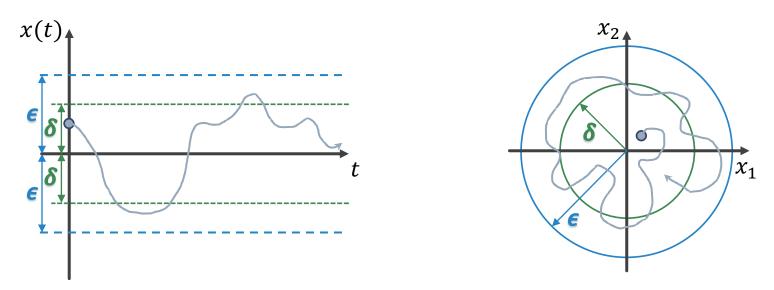


Stability?



Stability in the Sense of Lyapunov "Stability i.s.L."

An equilibrium point \mathbf{x}_e of the system $\dot{\mathbf{x}} = f(\mathbf{x})$ is **stable** in the sense of Lyapunov if for any $\epsilon > 0$, there exists a value $\delta(t_0, \epsilon) > 0$ such that if $\|\mathbf{x}(t_0, \mathbf{x}_0) - \mathbf{x}_e\| < \delta$ then $\|\mathbf{x}(t; t_0, \mathbf{x}_0) - \mathbf{x}_e\| < \epsilon$ for all $t \ge t_0$.



> An equilibrium point is unstable if it is not stable i.s.L.

> The equilibrium point is **uniformly stable** i.s.L. if $\delta = \delta(\epsilon)$.

Stability i.s.L. is Weak just by Itself

- Stability i.s.L. means that the system state will remain close to the equilibrium point.
- Stability i.s.L. bounds how much the system state will fluctuate around the equilibrium point.

Does not answer...

- > Will it ever reach the equilibrium point?
- > Will it stay at the equilibrium point for all future times?

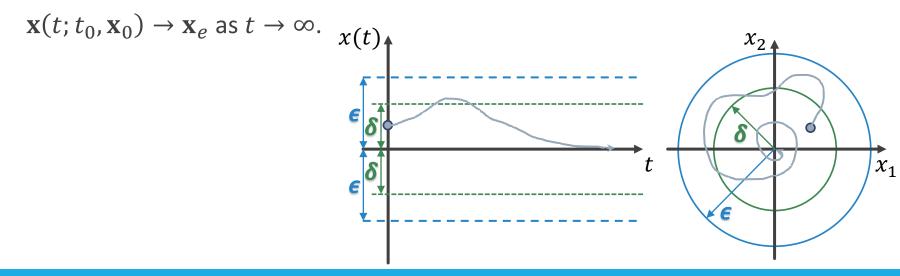
Asymptotic Stability

> An equilibrium point is asymptotically stable i.s.L. if it is:

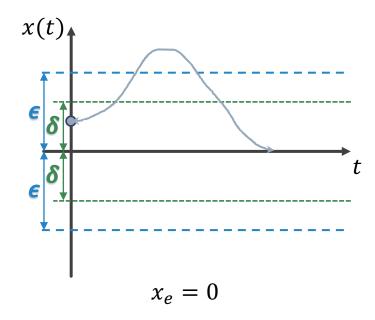
1. Stable (i.s.L.)

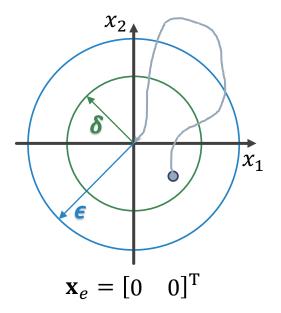
For any $\epsilon > 0$, there exists a value $\delta(t_0, \epsilon) > 0$ such that if $\|\mathbf{x}(t_0, \mathbf{x}_0) - \mathbf{x}_e\| < \delta$ then $\|\mathbf{x}(t; t_0, \mathbf{x}_0) - \mathbf{x}_e\| < \epsilon$ for all $t \ge t_0$.

2. Convergent



Note: Convergence alone does not necessarily imply (asymptotic) stability! Why?



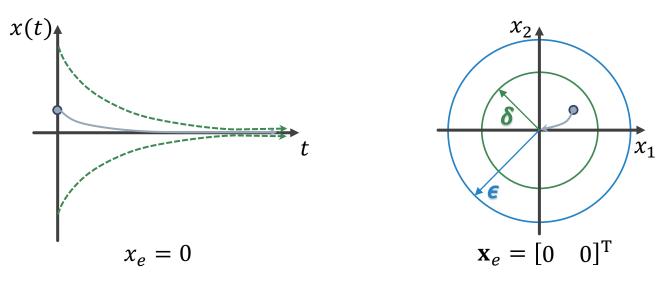


Still does not answer...➢ How fast does it converge?

An equilibrium point $x_e = 0$ is exponentially stable if there exists coefficient $m \ge 0$ and rate $\alpha \ge 0$ such that

 $\|\boldsymbol{x}(\boldsymbol{t})\| \leq \|\boldsymbol{x}_o\| m e^{-\alpha(t-t_0)}$

For all x_o in some ball around $x_e = 0$.



Local vs Global

These are local definitions of stability about an equilibrium point.

• We were free to choose small δ in order to start x_0 near x_e .

We say an equilibrium point x_e is globally stable if it is stable for all initial conditions x_0 .

Stability of LTI Systems

Linear-Time Invariant (LTI) systems:

$$\dot{\mathbf{x}} = A\mathbf{x}$$
 $X \in \mathbb{R}^n$
 $A \in \mathbb{R}^{nxn}$, constant

An LTI system is **asymptotically stable** if and only if all the eigenvalues of *A* have **strictly negative** real parts.

 \succ For LTI systems, asymptotic stability \Leftrightarrow exponential stability.

The system is **marginally stable** if and only if all the eigenvalues of *A* have **nonpositive** real parts, at least one has zero real part, *and every* eigenvalue with zero real parts has its algebraic multiplicity equal to it's geometric multiplicity.

Control of a First Order System

Problem

- Kinematic model $\dot{\mathbf{x}} = \mathbf{u}$ \mathbf{u} is a velocity
- Want to follow trajectory $\mathbf{x}^{des}(t)$

General approach

- Define error $\mathbf{e}(t) = \mathbf{x}^{\text{des}}(t) \mathbf{x}(t)$
- Want $\mathbf{e}(t)$ to converge exponentially to 0

Strategy

- Find **u** such that $\dot{\mathbf{e}} + K_p \mathbf{e} = 0$
- If $K_p > 0$ then $\mathbf{e}(t) = \exp(-K_p(t t_0))\mathbf{e}(t_0)$

•
$$\mathbf{u}(t) = \dot{\mathbf{x}}^{des}(t) + K_p \mathbf{e}(t)$$

Control of a Second Order System

Problem

- State **x** and input **u**
- $\circ\,$ Kinematic model $\ddot{\mathbf{x}} = \mathbf{u}$
- $\circ~$ Want to follow trajectory $\mathbf{x}^{\mathrm{des}}(t)$

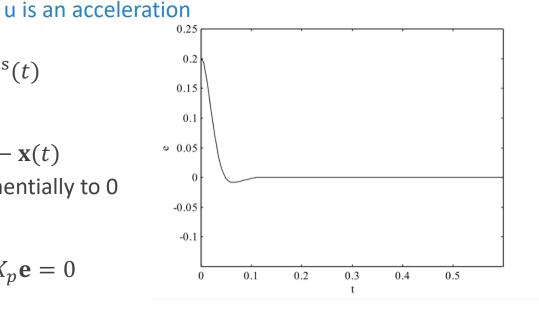
General approach

- Define error $\mathbf{e}(t) = \mathbf{x}^{\text{des}}(t) \mathbf{x}(t)$
- Want $\mathbf{e}(t)$ to converge exponentially to 0

Strategy

- Find **u** such that $\ddot{\mathbf{e}} + K_d \dot{\mathbf{e}} + K_p \mathbf{e} = 0$
- Pick some K_p , $K_d > 0$

•
$$\mathbf{u}(t) = \ddot{\mathbf{x}}^{des}(t) + K_d \dot{\mathbf{e}}(t) + K_p \mathbf{e}(t)$$



Control for Trajectory Tracking

PD Control

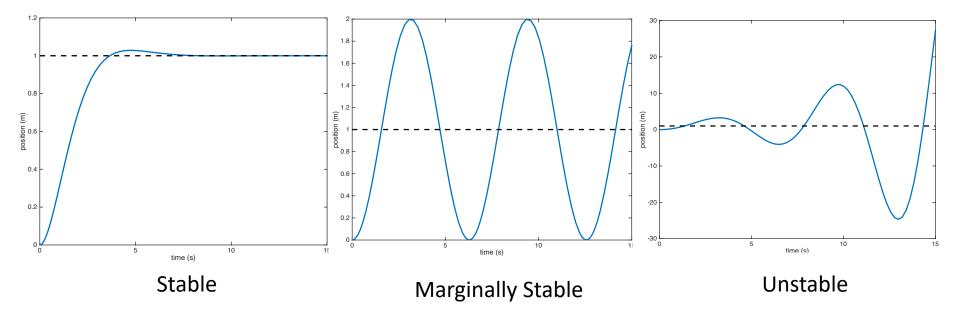
- $\mathbf{u}(t) = \ddot{\mathbf{x}}^{des}(t) + \frac{K_d \dot{\mathbf{e}}(t)}{K_p \mathbf{e}(t)} + \frac{K_p \mathbf{e}(t)}{K_p \mathbf{e}(t)}$
- Proportional term $(\frac{K_p}{K_p})$ has a spring (capacitance) response
- Derivative term $(\frac{K_d}{K_d})$ has a dashpot (resistance) response

PID Control

- $\mathbf{u}(t) = \ddot{\mathbf{x}}^{des}(t) + \frac{K_d \dot{\mathbf{e}}(t)}{K_d \mathbf{e}(t)} + \frac{K_p \mathbf{e}(t)}{K_l} + \frac{K_l \int_0^t \mathbf{e}(\tau) d\tau}{K_l t}$
- Integral term (K_I) makes steady state error go to 0
 - Accounts for model error or disturbances
- PID control generates a third-order closed-loop system

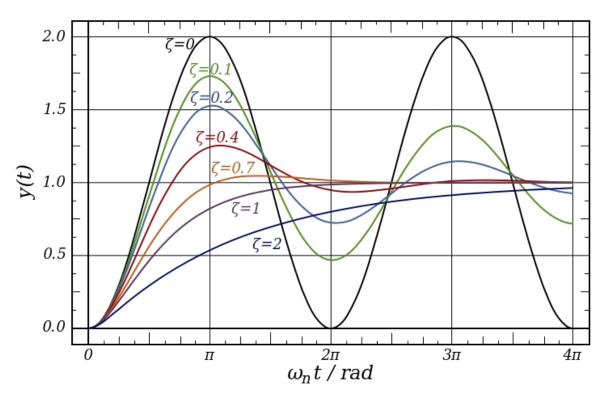
Control Gains

Gains change the system response



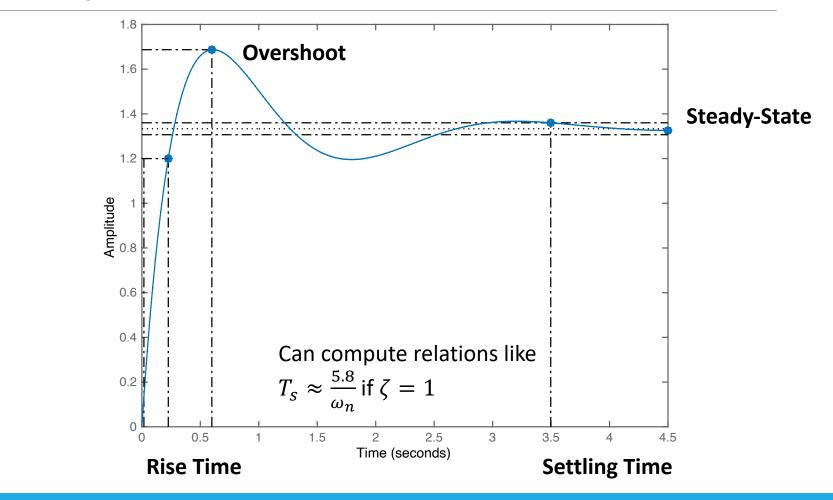
Stereotyped 2nd Order Response

 $\ddot{\mathbf{e}} + K_d \dot{\mathbf{e}} + K_p \mathbf{e} = 0$ $\ddot{\mathbf{e}} + 2\zeta \omega_n \dot{\mathbf{e}} + \omega_n^2 \mathbf{e} = 0$ $\lambda = -\omega_n (\zeta \pm i\sqrt{1 - \zeta^2})$

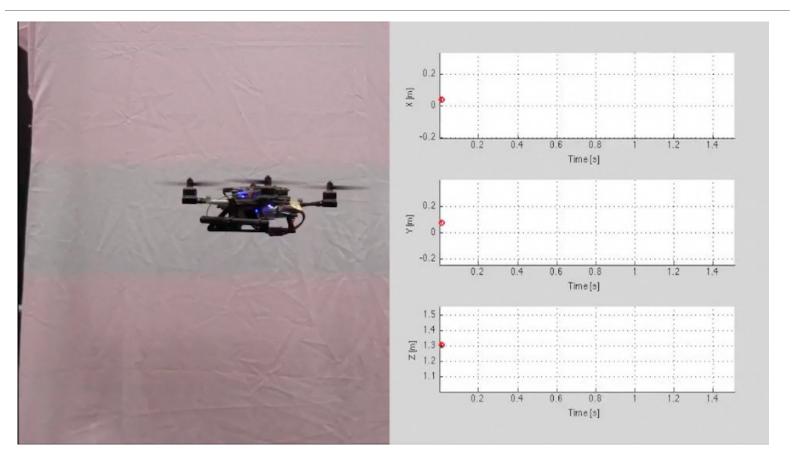


For this simple example, can choose K_p and K_d to get a desired damping ratio.

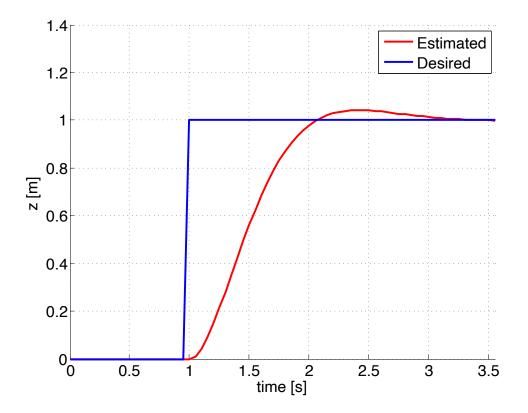
Response to Disturbance



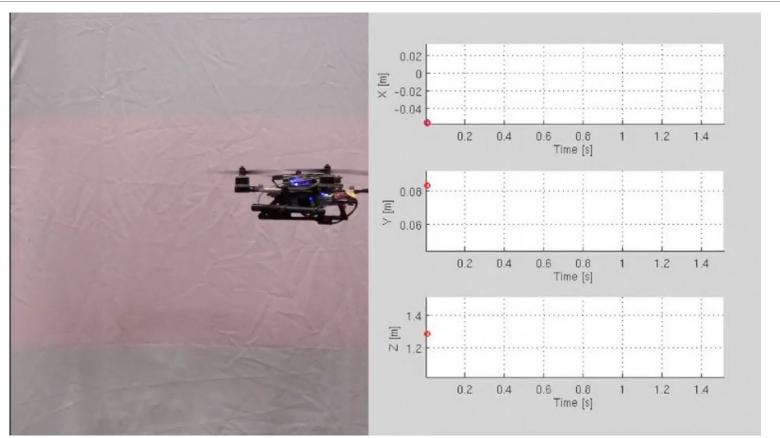
PD Position Controller



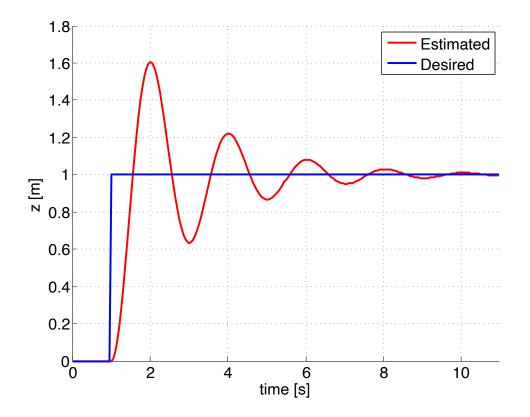
PD Controller for Z

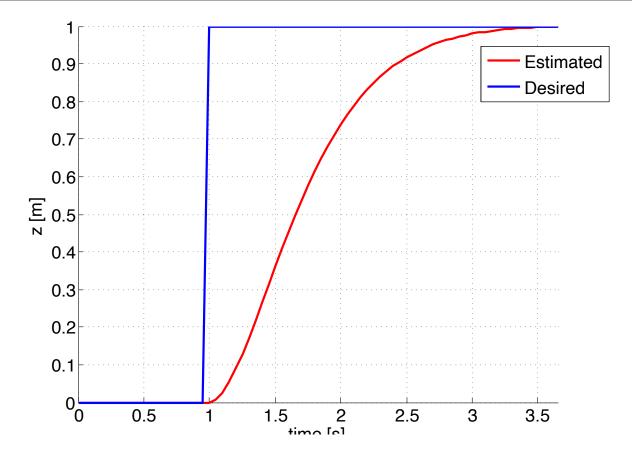


High K_p

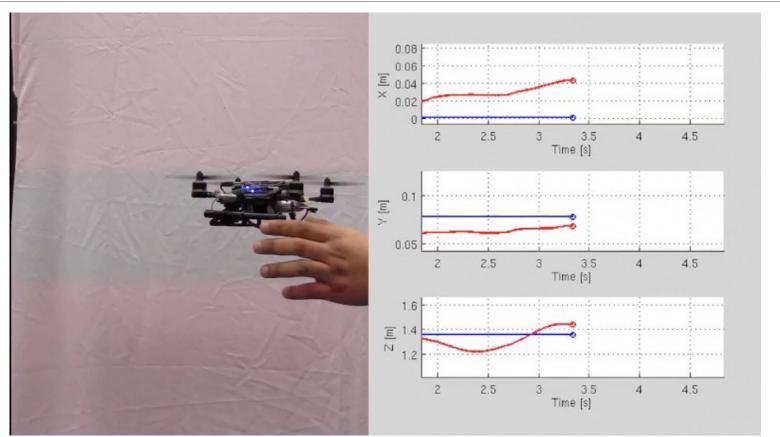


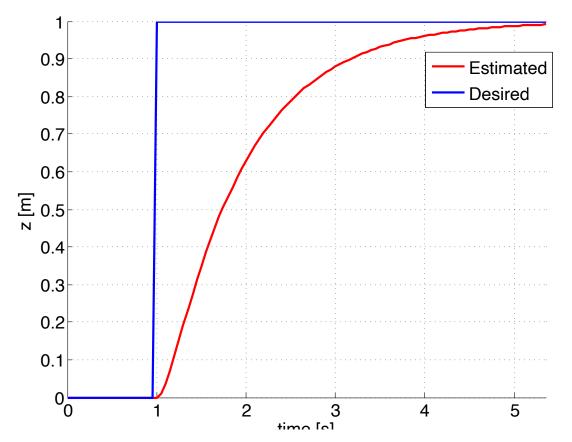
High K_p





High K_d





Manual Tuning

Parameter Increased	<i>K</i> p	K _d	K _I
Rise Time	Decrease	-	Decrease
Overshoot	Increase	Decrease	Increase
Settling Time	-	Decrease	Increase
Steady-State Error	Decrease	-	Eliminate

• "If I increase K_P , then

Rise Time will *Decrease,* and *Overshoot* will *Increase,* and *Steady-State Error* will *Decrease.*"

These are only general guidelines for "typical systems."

Ziegler-Nichols Method

Heuristic method for PID gain tuning

- 1. Set $K_d = K_I = 0$
- 2. Increase K_p until ultimate gain K_u where system starts to oscillate
- **3**. Find oscillation period T_u at K_u
- 4. Set gains according to:

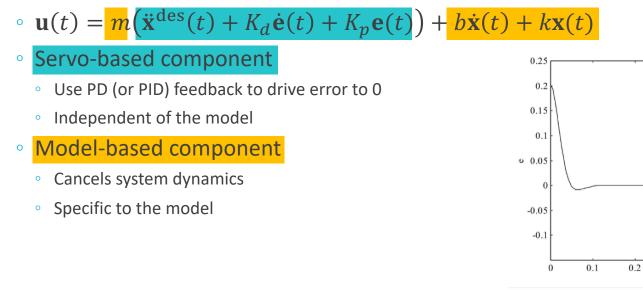
Controller	K _p	K _d	K _I
Р	$0.5K_u$		
PD	0.8 <i>K</i> _u	$K_p T_u/8$	
PID	0.6 <i>K</i> _u	$K_p T_u/8$	$2K_p/T_u$

Model-Based Control

PD and PID control laws applied to real systems

- $m\ddot{\mathbf{x}}(t) + b\dot{\mathbf{x}}(t) + k\mathbf{x}(t) = \mathbf{u}(t)$
- Performance will depend on the system dynamics
- Need to tune gains to maximize performance

Model-based control law



u is a force! also, system dynamics!

0.3

0.4

FEEDBACK CONTROL

0.5

Model-Based Control

Advantages

- Decomposes control law model-dependent and model-independent part
- Model-independent gains will work for any system

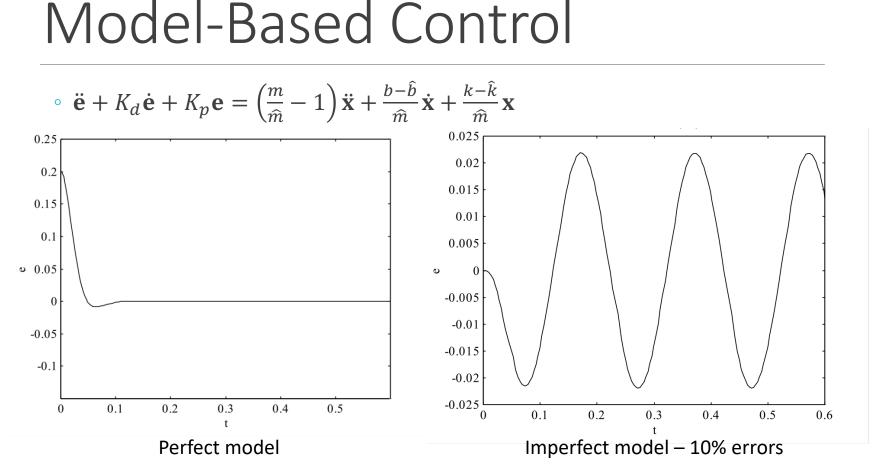
Disadvantages

- If model parameters have errors then error will not go to 0
- Original system
 - $m\ddot{\mathbf{x}}(t) + b\dot{\mathbf{x}}(t) + k\mathbf{x}(t) = \mathbf{u}(t)$
- Our control law

Substitute to find total system dynamics

•
$$\ddot{\mathbf{e}} + K_d \dot{\mathbf{e}} + K_p \mathbf{e} = \left(\frac{m}{\widehat{m}} - 1\right) \ddot{\mathbf{x}} + \frac{b - \widehat{b}}{\widehat{m}} \dot{\mathbf{x}} + \frac{k - \widehat{k}}{\widehat{m}} \mathbf{x}$$

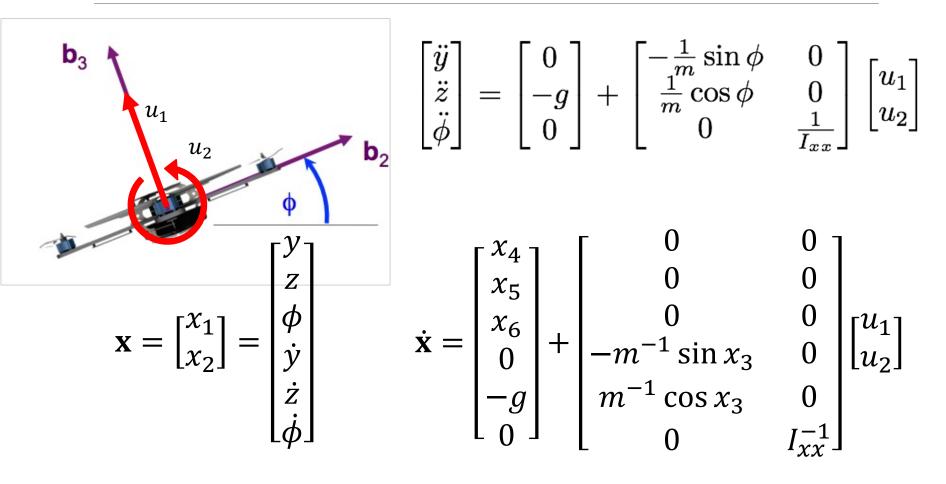
Right-hand side drives error away from 0!



If right-hand side is bounded then we can prove $\mathbf{e}(t)$ also bounded

Quadrotor Control

Planar Quadrotor Model



Affine Nonlinear System

State \boldsymbol{x} and input \boldsymbol{u}

State equations $\dot{\mathbf{x}} = f(\mathbf{x}) + g(\mathbf{x})\mathbf{u}$

$$\circ \dot{x} = \begin{bmatrix} x_4 \\ x_5 \\ x_6 \\ 0 \\ -g \\ 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ -m^{-1}\sin x_3 & 0 \\ m^{-1}\cos x_3 & 0 \\ 0 & I_{xx}^{-1} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$

- Nonlinear in the state
- Affine in the control input

Linearized Dynamics

Nonlinear dynamics

$$\ddot{y} = -\frac{u_1}{m}\sin(\phi)$$
$$\ddot{z} = -g + \frac{u_1}{m}\cos(\phi)$$
$$\ddot{\phi} = \frac{u_2}{I_{xx}}$$

$$\begin{array}{lll} \ddot{y} = & -g\phi \\ \ddot{z} = & \frac{u_1}{m} \\ \ddot{\phi} = & \frac{u_2}{I_{xx}} \end{array}$$

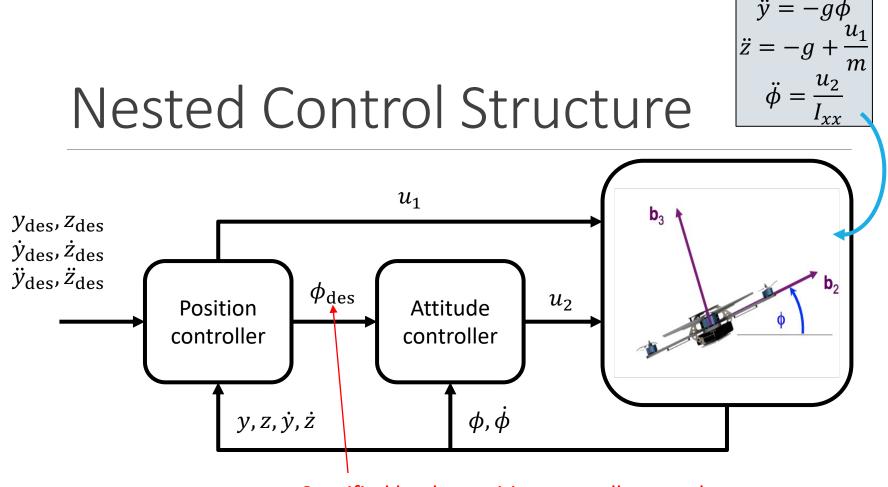
Equilibrium configuration

$$\mathbf{q}_e = \begin{bmatrix} y_0 \\ z_0 \\ 0 \end{bmatrix}, \mathbf{x}_e = \begin{bmatrix} \mathbf{q}_e \\ \mathbf{0} \end{bmatrix}$$

Equilibrium hover condition

$$y_0, z_0$$

 $\phi_0 = 0$
 $u_{1,0} = mg, u_{2,0} = 0$



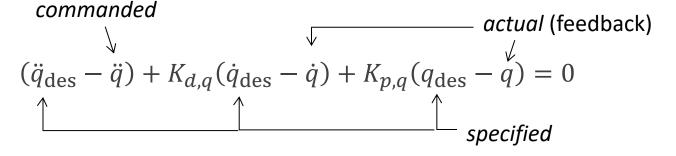
Specified by the position controller, **not** the user

Works when inner (attitude) control loop runs much faster (10x) than the outer (position) control loop

Control Equations

Recall for a second order system $\ddot{\mathbf{e}} + K_d \dot{\mathbf{e}} + K_p \mathbf{e} = 0$

For any configuration variable q we have



Control Equations

Lateral dynamics

•
$$\ddot{y} = -g\phi$$

• $\ddot{\phi} = \frac{u_2}{I_{xx}}$

Desired attitude

• $\phi_{des} = -\frac{\ddot{y}_c}{g}$ • $\dot{\phi}_{des} = 0$ • $\ddot{\phi}_{des} = 0$

Attitude controller

•
$$u_2 = I_{xx}\ddot{\phi}_c$$

Vertical dynamics

•
$$\ddot{z} = \frac{u_1}{m}$$

Z-position controller • $u_1 = m(\ddot{z}_c)$

Control Equations

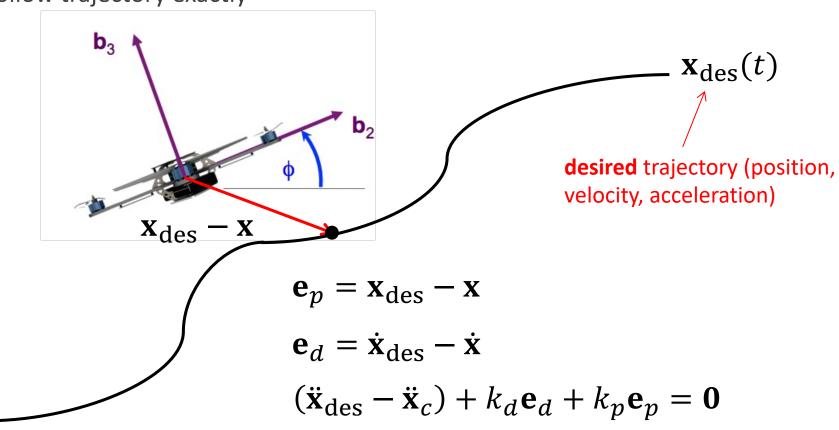
Control equations

$$u_{1} = m\left(\ddot{z}_{des} + k_{d,z}(\dot{z}_{des} - \dot{z}) + k_{p,z}(z_{des} - z)\right)$$
$$u_{2} = I_{xx}\left(\ddot{\phi}_{des} + k_{d,\phi}(\dot{\phi}_{des} - \dot{\phi}) + k_{p,\phi}(\phi_{des} - \phi)\right)$$
$$\phi_{des} = -\frac{1}{g}\left(\ddot{y}_{des} + k_{d,y}(\dot{y}_{des} - \dot{y}) + k_{p,y}(y_{des} - y)\right)$$

- Three sets of PD gains.
- Systematically tune using step responses.
 - Thrust
 - Roll
 - Position (depends on roll being well-tuned)

Trajectory Tracking (in time)

Follow trajectory exactly



Project

Make plots in your sandbox!

Run tests locally.

Gain tuning: Finding 12 magic numbers by trial and error won't work.

How to judge controller quality.

Order of tuning the cascaded controller.

Choose reasonable trajectories.

Practical constraints: actuator limits.