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Trajectory Controller
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Equilibrium.
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Stability?
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Stability in the Sense of Lyapunov
“Stability i.s.L.”

An equilibrium point 𝐱! of the system 𝐱̇ = 𝑓(𝐱) is stable in the sense of
Lyapunov if for any 𝜖 > 0, there exists a value 𝛿 𝑡", 𝜖 > 0 such that if
𝐱 𝑡", 𝐱" − 𝐱! < 𝛿 then 𝐱 𝑡; 𝑡", 𝐱" − 𝐱! < 𝜖 for all 𝑡 ≥ 𝑡".
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𝑡

𝑥(𝑡) 𝑥!

𝑥"

ØAn equilibrium point is unstable if it is not stable i.s.L.

ØThe equilibrium point is uniformly stable i.s.L. if 𝛿 = 𝛿 𝜖 .



Stability i.s.L. is Weak
just by Itself

ØStability i.s.L. means that the system state will remain close to the 
equilibrium point.

ØStability i.s.L. bounds how much the system state will fluctuate around 
the equilibrium point.

Does not answer…

ØWill it ever reach the equilibrium point?

ØWill it stay at the equilibrium point for all future times?
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Asymptotic Stability
ØAn equilibrium point is asymptotically stable i.s.L. if it is:

1. Stable (i.s.L.)

For any 𝜖 > 0, there exists a value 𝛿 𝑡", 𝜖 > 0 such that if     
𝐱 𝑡", 𝐱" − 𝐱! < 𝛿 then 𝐱 𝑡; 𝑡", 𝐱" − 𝐱! < 𝜖 for all 𝑡 ≥ 𝑡".

2. Convergent
𝐱 𝑡; 𝑡", 𝐱" → 𝐱! as 𝑡 → ∞.
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𝑡

𝑥(𝑡) 𝑥!

𝑥"



Asymptotic Stability
ØNote: Convergence alone does not necessarily imply (asymptotic) 

stability!  Why?
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𝑡

𝑥(𝑡) 𝑥!

𝑥"

𝑥# = 0 𝐱# = 0 0 $

Still does not answer…
Ø How fast does it converge?



Exponential Stability
An equilibrium point 𝒙! = 0 is exponentially stable if there exists 
coefficient 𝑚 ≥ 0 and rate 𝛼 ≥ 0 such that

𝒙 𝒕 ≤ 𝒙( 𝑚𝑒)*(+)+!)

For all 𝒙# in some ball around 𝒙! = 0.
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𝑡

𝑥(𝑡) 𝑥!

𝑥"

𝑥# = 0 𝐱# = 0 0 $



Local vs Global
These are local definitions of stability about an equilibrium point.
◦ We were free to choose small 𝛿 in order to start 𝒙" near 𝒙!.

We say an equilibrium point 𝒙! is globally stable if it is stable for all 
initial conditions 𝒙" .
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Stability of LTI Systems
Linear-Time Invariant (LTI) systems:

ØAn LTI system is asymptotically stable if and only if all the eigenvalues 
of 𝐴 have strictly negative real parts.

ØFor LTI systems, asymptotic stability ⇔ exponential stability.

ØThe system is marginally stable if and only if all the eigenvalues of 𝐴
have nonpositive real parts, at least one has zero real part, and every 
eigenvalue with zero real parts has its algebraic multiplicity equal to it’s 
geometric multiplicity.
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𝐱̇ = 𝐴𝐱 𝐱 ∈ ℝ,
𝐴 ∈ ℝ,-,, constant



Control of a First Order System
Problem

◦ State 𝐱 and input 𝐮
◦ Kinematic model 𝐱̇ = 𝐮
◦ Want to follow trajectory 𝐱%&'(𝑡)

General approach
◦ Define error 𝐞 𝑡 = 𝐱%&' 𝑡 − 𝐱(𝑡)
◦ Want 𝐞 𝑡 to converge exponentially to 0

Strategy
◦ Find 𝐮 such that 𝐞̇ + 𝐾(𝐞 = 0
◦ If 𝐾( > 0 then 𝐞 𝑡 = exp −𝐾((𝑡 − 𝑡)) 𝐞 𝑡)
◦ 𝐮 𝑡 = 𝐱̇%&' 𝑡 + 𝐾(𝐞(𝑡)

1/30/2020 FEEDBACK CONTROL 14

u is a velocity



Control of a Second Order 
System
Problem

◦ State 𝐱 and input 𝐮
◦ Kinematic model 𝐱̈ = 𝐮
◦ Want to follow trajectory 𝐱%&'(𝑡)

General approach
◦ Define error 𝐞 𝑡 = 𝐱%&' 𝑡 − 𝐱(𝑡)
◦ Want 𝐞 𝑡 to converge exponentially to 0

Strategy
◦ Find 𝐮 such that 𝐞̈ + 𝐾*𝐞̇ + 𝐾(𝐞 = 0
◦ Pick some 𝐾(, 𝐾* > 0
◦ 𝐮 𝑡 = 𝐱̈%&' 𝑡 + 𝐾*𝐞̇ 𝑡 + 𝐾(𝐞(𝑡)
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u is an acceleration



Control for Trajectory Tracking
PD Control

◦ 𝐮 𝑡 = 𝐱̈%&' 𝑡 + 𝐾*𝐞̇ 𝑡 + 𝐾(𝐞(𝑡)
◦ Proportional term (𝐾() has a spring (capacitance) response
◦ Derivative term (𝐾*) has a dashpot (resistance) response

PID Control
◦ 𝐮 𝑡 = 𝐱̈%&' 𝑡 + 𝐾*𝐞̇ 𝑡 + 𝐾(𝐞 𝑡 + 𝐾+ ∫)

, 𝐞 𝜏 𝑑𝜏
◦ Integral term (𝐾+) makes steady state error go to 0

◦ Accounts for model error or disturbances

◦ PID control generates a third-order closed-loop system
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Control Gains
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Gains change the system response
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Stereotyped 2nd Order Response
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ë + 𝐾=ė + 𝐾>e = 0
ë + 2𝜁𝜔,ė + 𝜔,?e = 0 𝜆 = −𝜔,(𝜁 ± 𝑖 1 − 𝜁?)

For this simple example, can choose 𝐾$ and 𝐾% to get a desired damping ratio.
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Rise Time

Overshoot

Settling Time

Steady-State

Can compute relations like
𝑇- ≈

..0
1!

if 𝜁 = 1



PD Position Controller
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PD Controller for Z
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High 𝐾!
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High 𝐾!
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Low 𝐾!
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High 𝐾"
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High 𝐾"
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Manual Tuning
Parameter Increased 𝐾𝒑 𝐾𝒅 𝐾𝑰

Rise Time Decrease - Decrease
Overshoot Increase Decrease Increase

Settling Time - Decrease Increase
Steady-State Error Decrease - Eliminate
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• “If I increase 𝑲𝑷, then 
Rise Time will Decrease, and
Overshoot will Increase, and
Steady-State Error will Decrease.”

• These are only general guidelines for “typical systems.”



Ziegler-Nichols Method
Heuristic method for PID gain tuning

1. Set 𝐾% = 𝐾* = 0

2. Increase 𝐾$ until ultimate gain 𝐾+ where system starts to oscillate

3. Find oscillation period 𝑇+ at 𝐾+
4. Set gains according to:
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Controller 𝑲𝒑 𝑲𝒅 𝑲𝑰

P 0.5𝐾5 -- --

PD 0.8𝐾5 𝐾(𝑇5/8 --

PID 0.6𝐾5 𝐾(𝑇5/8 2𝐾(/𝑇5



Model-Based Control
PD and PID control laws applied to real systems

◦ 𝑚𝐱̈ 𝑡 + 𝑏𝐱̇ 𝑡 + 𝑘𝐱 𝑡 = 𝒖(𝑡)
◦ Performance will depend on the system dynamics
◦ Need to tune gains to maximize performance

Model-based control law
◦ 𝐮 𝑡 = 𝑚 𝐱̈%&' 𝑡 + 𝐾*𝐞̇ 𝑡 + 𝐾(𝐞(𝑡) + 𝑏𝐱̇ 𝑡 + 𝑘𝐱(𝑡)
◦ Servo-based component

◦ Use PD (or PID) feedback to drive error to 0
◦ Independent of the model

◦ Model-based component
◦ Cancels system dynamics
◦ Specific to the model
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u is a force!
also, system dynamics!



Model-Based Control
Advantages

◦ Decomposes control law model-dependent and model-independent part
◦ Model-independent gains will work for any system

Disadvantages
◦ If model parameters have errors then error will not go to 0
◦ Original system

◦ 𝑚𝐱̈ 𝑡 + 𝑏𝐱̇ 𝑡 + 𝑘𝐱 𝑡 = 𝒖(𝑡)
◦ Our control law

◦ 𝐮 𝑡 = O𝑚 𝐱̈%&' 𝑡 + 𝐾*𝐞̇ 𝑡 + 𝐾(𝐞(𝑡) + P𝑏𝐱̇ 𝑡 + P𝑘𝐱(𝑡)

◦ Substitute to find total system dynamics

◦ 𝐞̈ + 𝐾*𝐞̇ + 𝐾(𝐞 =
6
76
− 1 𝐱̈ + 89:8

76
𝐱̇ + ;9:;

76
𝐱

◦ Right-hand side drives error away from 0!
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Estimates



Model-Based Control
◦ 𝐞̈ + 𝐾*𝐞̇ + 𝐾(𝐞 =

6
76
− 1 𝐱̈ + 89:8

76
𝐱̇ + ;9:;

76
𝐱

If right-hand side is bounded then we can prove 𝐞(𝑡) also bounded
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Perfect model Imperfect model – 10% errors



Quadrotor 
Control
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Planar Quadrotor Model
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𝑢"
𝑢!

𝐱̇ =

𝑥R
𝑥S
𝑥T
0
−𝑔
0

+

0 0
0 0
0 0

−𝑚)U sin 𝑥V 0
𝑚)U cos 𝑥V 0

0 𝐼--)U

𝑢U
𝑢?𝐱 =

𝑥U
𝑥? =

𝑦
𝑧
𝜙
𝑦̇
𝑧̇
𝜙̇



Affine Nonlinear System
State 𝐱 and input 𝐮

State equations 𝐱̇ = 𝑓 𝐱 + 𝑔 𝐱 𝐮

◦ 𝑥̇ =

𝑥<
𝑥.
𝑥=
0
−𝑔
0

+

0 0
0 0
0 0

−𝑚9" sin 𝑥> 0
𝑚9" cos 𝑥> 0

0 𝐼??9"

𝑢"
𝑢!

◦ Nonlinear in the state
◦ Affine in the control input
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Linearized Dynamics
Nonlinear dynamics

Equilibrium configuration

Linearized model

Equilibrium hover condition

𝑦", 𝑧"
𝜙" = 0

𝑢,," = 𝑚𝑔, 𝑢.," = 0
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𝐪! =
𝑦"
𝑧"
0

, 𝐱! =
𝐪!
𝟎



Nested Control Structure
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Position
controller

Attitude
controller

𝑦%&', 𝑧%&'
𝑦̇%&', 𝑧̇%&'
𝑦̈%&', 𝑧̈%&'

𝑢"

𝑢!𝜙%&'

𝑦, 𝑧, 𝑦̇, 𝑧̇ 𝜙, 𝜙̇

𝑦̈ = −𝑔𝜙
𝑧̈ = −𝑔 +

𝑢"
𝑚

𝜙̈ =
𝑢!
𝐼??

Works when inner (attitude) control loop runs much faster
(10x) than the outer (position) control loop

Specified by the position controller, not the user



Control Equations
Recall for a second order system 𝐞̈ + 𝐾%𝐞̇ + 𝐾$𝐞 = 0

For any configuration variable 𝑞 we have

𝑞̈/01 − 𝑞̈ + 𝐾%,2 𝑞̇/01 − 𝑞̇ + 𝐾$,2 𝑞/01 − 𝑞 = 0
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specified

commanded actual (feedback)



Control Equations
Lateral dynamics

◦ 𝑦̈ = −𝑔𝜙
◦ 𝜙̈ = 5"

+##

Desired attitude
◦ 𝜙%&' = − Ä$

B

◦ 𝜙̇%&' = 0
◦ 𝜙̈%&' = 0

Attitude controller
◦ 𝑢! = 𝐼??𝜙̈C

Vertical dynamics
◦ 𝑧̈ = 5%

6

Z-position controller
◦ 𝑢" = 𝑚 𝑧̈C
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Control Equations
Control equations

𝑢, = 𝑚 𝑧̈/01 + 𝑘%,3 𝑧̇/01 − 𝑧̇ + 𝑘$,3 𝑧/01 − 𝑧

𝑢. = 𝐼44 𝜙̈/01 + 𝑘%,5 𝜙̇/01 − 𝜙̇ + 𝑘$,5 𝜙/01 − 𝜙

𝜙/01 = − ,
6
𝑦̈/01 + 𝑘%,7 𝑦̇/01 − 𝑦̇ + 𝑘$,7 𝑦/01 − 𝑦
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• Three sets of PD gains.
• Systematically tune using step responses.

• Thrust
• Roll
• Position (depends on roll being well-tuned)



Trajectory Tracking (in time)
Follow trajectory exactly
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desired trajectory (position, 
velocity, acceleration)

𝐱abc(𝑡)

𝐱abc − 𝐱

𝐞> = 𝐱abc − 𝐱

𝐞= = 𝐱̇abc − 𝐱̇

𝐱̈abc − 𝐱̈d + 𝑘=𝐞= + 𝑘>𝐞> = 𝟎



Project
Make plots in your sandbox!

Run tests locally.

Gain tuning: Finding 12 magic numbers by trial and error won’t work.

How to judge controller quality.

Order of tuning the cascaded controller.

Choose reasonable trajectories.

Practical constraints: actuator limits.
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