(日)、(型)、(E)、(E)、(E)、(O)()

1

Summer School-Math. Methods in Robotics@TU-BS.DE 13-31 July 2009

Chapter 5 Multifingered Hand Modeling and Control

Introduction

Grasp Statics

Kinematics o Contact

Hand Kinemati

Grasp Planning

Grasp Force Optimizatio

Coordinated Control

# Lecture Notes for A Mathematical Introduction to Robotic Manipulation

By Z.X. Li<sup>\*</sup> and Y.Q. Wu<sup>#</sup>

\*Dept. of ECE, Hong Kong University of Science & Technology #School of ME, Shanghai Jiaotong University

24 July 2009

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Summer School-Math. Methods in Robotics@TU-BS.DE 13-31 July 2009

2

Chapter 5 Multifingered Hand Modeling and Control

Introduction

Grasp Statics

Kinematics o Contact

Hand Kinematic

Grasp Planning

Grasp Force Optimizatior

Coordinated Control

# Chapter 5 Multifingered Hand

- 1 Introduction
- 2 Grasp Statics
- 3 Kinematics of Contact
- 4 Hand Kinematics
- 5 Grasp Planning
- 6 Grasp Force Optimization
- 7 Coordinated Control

# 5.1 Introduction

3

Chapter 5 Multifingered Hand Modeling and Control

Introduction

Grasp Statics

Kinematics of Contact

Hand Kinematic

Grasp Planning

Grasp Force Optimizatior

Coordinated Control





#### Hand function:

Interface with external world

#### Hand operation:

- Grasping
- Dextrous manipulation

ヘロト 人間ト ヘヨト ヘヨト

э

- Fine manipulation
- Exploration

# 5.1 Introduction

4

Chapter 5 Multifingered Hand Modeling and Control

Introduction

Grasp Statics

Kinematics of Contact

Hand Kinematic:

Grasp Planning

Grasp Force Optimization

Coordinated Control

# □ History of hand design:

- Prosthetic devices (1509)
- Dextrous end-effectors
- Multiple manipulator/agents coordination
- Human hand study







# 5.1 Introduction

5

## □ Hand Design Issues:

- Mechanical systems
- Sensor/actuators
- Control hardware

#### □ A Sample List of Hand Prototypes:

The salisbury Hand (1982)

The Utah-MIT Hand (1987)

Chapter 5 Multifingered Hand Modeling and Control

Introduction

Grasp Statics

Kinematics of Contact

Hand Kinematio

Grasp Planning

Grasp Force Optimizatior

Coordinated Control

# 5.1 Introduction

Chapter 5 Multifingered Hand Modeling and Control

Introduction

Grasp Statics

Kinematics of Contact

Hand Kinematics

Grasp Planning

Grasp Force Optimization

Coordinated Control



#### Toshiba Hand (Japan)



The HKUST Hand (1993)

#### DLR hand (Germany, 1993)



#### Micro/Nano Hand

э

(日)、

6

# 5.1 Introduction

7

#### Chapter 5 Multifingered Hand Modeling and Control

Introduction

Grasp Statics

Kinematics of Contact

Hand Kinematic

Grasp Planning

Grasp Force Optimizatior

Coordinated Control

#### *◊ Example: More Hands*



- 日本 - 4 日本 - 4 日本 - 日本

# 5.1 Introduction

#### "The hand is indeed an instrument of creation par excellence." Rodin (1840–1917)

Chapter 5 Multifingered Hand Modeling and Control

Introduction

Grasp Statics

Kinematics of Contact

Hand Kinematic

Grasp Planning

Grasp Force Optimization

Coordinated Control







Rodin Hand (1898)

# 5.1 Introduction

9

# □ Lessons from Biological Systems:

Chapter 5 Multifingered Hand Modeling and Control

Introduction

Grasp Statics

Kinematics of Contact

Hand Kinematic

Grasp Planning

Grasp Force Optimizatior

Coordinated Control % of motor cortex for hand control:

> Human 30% ~ 40% Monkey 20% ~ 30% Dog < 10%



Medial

Lateral

э

ヘロト 人間ト 人注ト 人注ト

Goal: A manipulation theory for robotic hand based on physical laws and rigorous mathematical models!

10

□ Contact Models: Frictionless Point Contact (FPC)  $F_i = \left| \begin{array}{c} 0 \\ 1 \\ 0 \\ 0 \end{array} \right| x_i, x_i \ge 0$  $g_{oc_i}$  $g_{po}$ **Grasp Statics** 2 Point Contact with friction (PCWF)  $F_i = \left| \begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right| x_i, x_i \in FC_i$  $FC_i = \{x_i \in \mathbb{R}^3 : \sqrt{x_{i,1}^2 + x_{i,2}^2} \le \mu_i x_{i,3}, x_{i,3} \ge 0\}$  $\mu_i$ : Coulomb coefficient of friction 

11

Chapter 5 Multifingered Hand Modeling and Control

Introduction

#### Grasp Statics

Kinematics of Contact

Hand Kinematic

Grasp Planning

Grasp Force Optimization

Coordinated Control



#### Elliptic Model:

$$FC_{i} = \{x_{i} \in \mathbb{R}^{4} | x_{i,3} \ge 0, \sqrt{\frac{1}{\mu_{i}^{2}} (x_{i,1}^{2} + x_{i,2}^{2}) + \frac{1}{\mu_{it}^{2}} x_{i,4}^{2}} \le x_{i,3}\}$$
  
Linear Model:  
$$FC_{i} = \{x_{i} \in \mathbb{R}^{4} | x_{i,3} \ge 0, \frac{1}{\mu_{i}} \sqrt{x_{i,1}^{2} + x_{i,2}^{2}} + \frac{1}{\mu_{it}} | x_{i,4} | \le x_{i,3}\}$$
  
$$\mu_{it}:$$
 Torsional coefficient of friction

Chapter 5 Multifingered Hand Modeling and Control

Introductio

#### **Grasp Statics**

Kinematics of Contact

Hand Kinematic

Grasp Planning

Grasp Force Optimization

Coordinated Control

 $F_i = B_i \cdot x_i, x_i \in FC_i, B_i \in \mathbb{R}^{6 \times m_i}$ : wrench basis **Property 1:** FC<sub>i</sub> is a closed subset of  $\mathbb{R}^{m_i}$ , with nonempty interior. 2  $\forall x_1, x_2 \in FC_i, \alpha x_1 + \beta x_2 \in FC_i, \forall \alpha, \beta > 0$ □ The Grasp Map: Single contact:  $F_o = \operatorname{Ad}_{g_{oc_i}}^T F_i = \underbrace{\begin{bmatrix} R_{oc_i} & 0\\ \hat{p}_{oc_i} R_{oc_i} & R_{oc_i} \end{bmatrix}}_{\hat{p}_{oc_i} R_{oc_i}} B_i x_i, x_i \in FC_i, G_i = \operatorname{Ad}_{g_{oc_i}^{-1}}^T B_i$ Multifingered grasp:  $F_o = \sum_{i=1}^{k} G_i x_i = \left[ \operatorname{Ad}_{g_{oc_1}-1}^T B_1, \dots, \operatorname{Ad}_{g_{oc_k}-1}^T B_k \right] \left[ \begin{array}{c} x_1 \\ x_2 \\ \vdots \\ x_k \end{array} \right] \triangleq G \cdot x$ 

 $x \in FC \triangleq FC_1 \times \cdots FC_k \subset \mathbb{R}^m, m = \sum_{i=1}^{k} m_i$ 

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

# 5.2 Grasp Statics

13

#### Chapter 5 Multifingered Hand Modeling and Control

Introduction

#### Grasp Statics

Kinematics of Contact

Hand Kinematic

Grasp Planning

Grasp Force Optimization

Coordinated Control

# **Definition: Grasp** (*G*, *FC*) is called a grasp.



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

# 5.2 Grasp Statics

14

Chapter 5 Multifingered Hand Modeling and Control

Introduction

**Grasp Statics** 

Kinematics of Contact

Hand Kinematics

Grasp Planning

Grasp Force Optimization

Coordinated Control

# *• Example: Grasp map of frictionless point contact*

$$F_{o} = \begin{bmatrix} R_{c_{i}} & 0\\ \hat{p}_{c_{i}}R_{c_{i}} & R_{c_{i}} \end{bmatrix} \begin{bmatrix} 0\\ 0\\ 1\\ 0\\ 0\\ 0 \end{bmatrix} x_{i} = \begin{bmatrix} n_{c_{i}}\\ p_{c_{i}} \times n_{c_{i}} \end{bmatrix} x_{i}, x_{i} \ge 0$$
$$\Rightarrow F_{o} = \begin{bmatrix} n_{c_{i}}\\ p_{c_{i}} \times n_{c_{i}} \end{bmatrix} \cdots \begin{bmatrix} n_{c_{k}}\\ p_{c_{k}}R_{c_{k}} \end{bmatrix} \begin{bmatrix} x_{1}\\ \vdots\\ x_{k} \end{bmatrix} = Gx$$
$$F_{o} \in \mathbb{R}^{6}, x \ge 0.$$

15

Chapter 5 Multifingered Hand Modeling and Control

Introduction

#### **Grasp Statics**

Kinematics of Contact

Hand Kinematics

Grasp Planning

Grasp Force Optimizatior

Coordinated Control



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Chapter 5 Multifingered Hand Modeling and Control

Introduction

#### Grasp Statics

Kinematics of Contact

F

F

Hand Kinematic

Grasp Planning

Grasp Force Optimizatior

Coordinated Control

$$G = \begin{bmatrix} 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & -1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 & 0 & r & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & -1 \\ 0 & r & 0 & 0 & -r & 0 & 0 & 0 \end{bmatrix}$$
$$x = \begin{bmatrix} x_{1,1} & x_{1,2} & x_{1,3} & x_{1,4} & x_{2,1} & x_{2,2} & x_{2,3} & x_{2,4} \end{bmatrix} \in \mathbb{R}^{8}$$
$$C = FC_1 \times FC_2$$
$$C_i = \left\{ x_i \in \mathbb{R}^4 \mid \sqrt{\frac{1}{\mu_i} (x_{i,1}^2 + x_{i,2}^2) + \mu_{it} x_{i,4}^2} \le x_{i,3}, x_{i,3} \ge 0 \right\}, i = 1, 2$$

16

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

# 5.2 Grasp Statics

17

Chapter 5 Multifingered Hand Modeling and Control

Introduction

#### Grasp Statics

Kinematics of Contact

Hand Kinematic

Grasp Planning

Grasp Force Optimization

Coordinated Control

#### □ Friction Cone Representation:

FPC 
$$P_i(x_i) = [x_i]$$
  
PCWF  $P_i(x_i) = \begin{bmatrix} \mu_i x_{i,3} + x_{i,1} & x_{i,2} \\ x_{i,2} & \mu_i x_{i,3} - x_{i,1} \end{bmatrix}$   
SFC  $P_i(x_i) = \begin{bmatrix} x_{i,3} + x_{i,1}/\mu_i & x_{i,2}/\mu_i - jx_{i,4}/\mu_{it} \\ x_{i,2}/\mu_i + jx_{i,4}/\mu_{it} & x_{i,3} - x_{i,1}/\mu_i \end{bmatrix}, j^2 = -1$   
 $P(x) \triangleq \text{Diag}(P_1(x_i), \dots, P_k(x_k)) \in \mathbb{R}^{\bar{m} \times \bar{m}} (\bar{m} = 2k)$   
 $x = (x_1, \dots, x_m)^T = (x_1^T, \dots, x_k^T) \in \mathbb{R}^m$ 

Chapter 5 Multifingered Hand Modeling and Control

Introduction

#### Grasp Statics

Kinematics of Contact

Hand Kinematic

Grasp Planning

Grasp Force Optimization

Coordinated Control

Property 2:  

$$P_{i} = P_{i}^{T}, P = P^{T}$$

$$x_{i} \in FC_{i} \text{ (or } x \in FC) \Leftrightarrow P_{i}(x_{i}) \geq 0 \text{ (or } P(x) \geq 0)$$

$$x_{i} \in FC_{i} \Leftrightarrow P_{i}(x_{i}) = \underbrace{S_{i}^{0}}_{=0} + \sum_{j=1}^{m_{i}} S_{i}^{j} x_{i,j} \geq 0, S_{i}^{j^{T}} = S_{i}^{j}, j = 1, \dots, m_{i}$$

$$x \in FC \Leftrightarrow P(x) = \underbrace{S_{0}}_{=0} + \sum_{i=1}^{m} S_{i} x_{i} \geq 0, S_{i}^{T} = S_{i}, i = 1, \dots, m$$

$$\text{Let } Q(x) = \underbrace{S_{0}}_{=0} + \sum_{i=1}^{m} x_{i} S_{i}, S_{i}^{T} = S_{i}, \text{ then}$$

$$A_{Q} = \{x \in \mathbb{R}^{m} | Q(x) \geq 0\} \text{ and } B_{Q} = \{x \in \mathbb{R}^{m} | Q(x) > 0\} \text{ are both convex.}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

# 5.2 Grasp Statics

19

#### **Proof of Property 2:** For PCWF,

$$\sigma(P_i) = \mu_i x_{i,3} \pm \sqrt{x_{i,1}^2 + x_{i,2}^2}$$

#### Thus,

$$\begin{aligned} x_i \in FC_i \Leftrightarrow x_{i,3} \ge 0, \sqrt{x_{i,1}^2 + x_{i,2}} \le \mu_i x_{i,3} \\ \Leftrightarrow \sigma(P_i) \ge 0 \\ \Leftrightarrow P_i \ge 0 \end{aligned}$$

#### Furthermore,

$$P_i(x_i) = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} x_{i,1} + \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} x_{i,2} + \begin{bmatrix} \mu_i & 0 \\ 0 & \mu_i \end{bmatrix} x_{i,3} \square$$

Exercise: Verify this for SFC.

#### Chapter 5 Multifingered Hand Modeling and Control

Introduction

#### Grasp Statics

Kinematics of Contact

Hand Kinematics

Grasp Planning

Grasp Force Optimization

Coordinated Control

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

# 5.2 Grasp Statics

20

#### Chapter 5 Multifingered Hand Modeling and Control

Introduction

#### Grasp Statics

Kinematics of Contact

Hand Kinematic

Grasp Planning

Grasp Force Optimizatior

Coordinated Control

# □ Force Closure:

**Definition:** 

A grasp (G, FC) is force closure if  $\forall F_o \in \mathbb{R}^p$   $(p = 3 \text{ or } 6), \exists x \in FC,$ s.t.  $Gx = F_o$ 

#### **Problem 1: Force-closure Problem** Determine if a grasp (*G*, *FC*) is force-closure or not.

# **Problem 2: Force Feasibility Problem** Given $F_o \in \mathbb{R}^p$ , p = 3 or 6, determine if there exists $x \in FC$ s.t. $Gx = F_o$

# **Problem 3: Force Optimization Problem** Given $F_o \in \mathbb{R}^p$ , p = 3 or 6, find $x \in FC$ s.t. $Gx = F_o$ and x minimizes $\Phi(x)$ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

# 5.2 Grasp Statics

Chapter 5 Multifingered Hand Modeling and Control

Introduction

Grasp Statics

Kinematics of Contact

Hand Kinematic:

Grasp Planning

Grasp Force Optimization

Coordinated Control

#### **Definition: internal force**

 $x_N \in FC$  is an internal force if  $Gx_N = 0$  or  $x_N \in (\ker G \cap FC)$ .

**Property 3:** (G, FC) is force closure iff  $G(FC) = \mathbb{R}^p$  and  $\exists x_N \in \ker G \text{ s.t. } x_N \in \operatorname{int}(FC).$ 

# 5.2 Grasp Statics

22

Chapter 5 Multifingered Hand Modeling and Control

Introduction

#### **Grasp Statics**

Kinematics of Contact

Hand Kinematic:

Grasp Planning

Grasp Force Optimization

Coordinated Control

#### **Proof of Property 3:**

Sufficiency:

For  $F_o \in \mathbb{R}^p$ , let x' be s.t.  $F_o = Gx'$ . Since  $\lim_{\alpha \to \infty} \frac{x' + \alpha x_N}{\alpha} = x_N \in int(FC)$ , there  $\exists \alpha'$ , sufficiently large, s.t.

$$\frac{x' + \alpha' x_N}{\alpha'} \in \operatorname{int}(FC) \subset FC$$

$$\Rightarrow x = x' + \alpha' x_N \in int(FC)$$
$$\Rightarrow Gx = Gx' = F_{\alpha}$$

#### Necessity:

Choose  $x_1 \in int(FC)$  s.t.  $F_o = Gx_1 \neq 0$ , and choose  $x_2 \in FC$  s.t.  $Gx_2 = -F_o$ . Define  $x_N = x_1 + x_2$ ,  $Gx_N = 0 \Rightarrow x_N \in int(FC)$ 

# 5.2 Grasp Statics

Chapter 5 Multifingered Hand Modeling and Control

Introduction

#### **Grasp Statics**

Kinematics of Contact

Hand Kinematic

Grasp Planning

Grasp Force Optimization

Coordinated Control

# □ Solutions of the force-closure and the force-feasibility problems (P1&P2):

♦ *Review:*  **Proposition: Linear matrix inequality (LMI) property** Given  $Q(x) = S_0 + \sum_{l=1}^m x_l S_l$ , where  $S_l = S_l^T$ , l = 0, ..., m, the sets  $A_Q = \{x \in \mathbb{R}^m | Q(x) \ge 0\}$  and  $B_Q = \{x \in \mathbb{R}^m | Q(x) > 0\}$  are convex.

# ♦ Review: LMI Feasibility Problem: Determine if the set $A_Q$ or $B_Q$ is empty or not.

24

#### ♦ Review:

Convex constraints on  $x \in \mathbb{R}^m$  (e.g., linear, (convex) quadratic, or matrix norm) can be transformed into LMI's.

Introduction

#### Grasp Statics

Kinematics of Contact

Hand Kinematic

Grasp Planning

Grasp Force Optimizatio

Coordinated Control

$$x = \begin{bmatrix} x_1 \\ \vdots \\ x_m \end{bmatrix} \ge 0 \Leftrightarrow \operatorname{diag}(x) \ge 0$$
  

$$For A \in \mathbb{R}^{n \times m}, b \in \mathbb{R}^n, d \in \mathbb{R},$$
  

$$\|Ax + b\| \le C^T x + d \Leftrightarrow \begin{bmatrix} (C^T x + d)I & Ax + b \\ (Ax + b)^T & C^T x + d \end{bmatrix} \ge 0$$

#### ♦ Review: Condition on force-closure

 $\blacksquare \operatorname{Rank}(G) = 6$ 

 $z x_N \in \mathbb{R}^m, P(x_N) > 0 \text{ and } Gx_N = 0$ 

Let  $V = [v_1, \dots, v_k]$  whose columns are the basis of ker G  $x_N = Vw, w \in \mathbb{R}^k$  $\tilde{P}(w) = P(Vw) = \sum_{l=1}^k w_l \tilde{S}_l, \tilde{S}_l = S_l^T, l = 1, \dots, k$ 

25

Chapter 5 Multifingered Hand Modeling and Control

Introduction

#### **Grasp Statics**

Kinematics of Contact

Hand Kinematics

Grasp Planning

Grasp Force Optimization

Coordinated Control ♦ *Review:*  **Proposition:** Given  $Q(x) = S_0 + \sum_{i=1}^m x_i S_i$ , where  $S_l = S_l^T$ , l = 0, ..., m. Let x = Az + b where  $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$ , then  $\tilde{Q}(z) = Q(Az + b) = \tilde{S}_0 + \sum_{l=1}^n z_l \tilde{S}_l$ , where  $\tilde{S}_l = \tilde{S}_l^T$ , l = 0, ..., n

#### Theorem 1:

(G, FC) is force-closure iff  $B_{\tilde{P}} = \{w \in \mathbb{R}^k | \sum_{l=1}^{\kappa} w_l \tilde{S}_l > 0\}$  is non-empty.

• Force feasibility Problem

 $Gx = F_o \Rightarrow x_o = \underbrace{G^{\dagger}}_{\text{generalized inverse}} F_o \text{ (may not lie in } FC\text{)}$ 

$$x = G^{\dagger}F_{o} + Vw, \operatorname{span}(V) = \ker G,$$
  

$$\tilde{P}(w) = P(G^{\dagger}F_{o} + Vw)$$
  

$$= \tilde{S}_{0} + \sum_{l=1}^{k} \tilde{S}_{l}w_{l}, \text{ where } \tilde{S}_{l} = S_{l}^{T}, l = 0, \dots, k$$
  

$$= S_{0} + \sum_{l=1}^{k} S_{l}w_{l}, \text{ where } \tilde{S}_{l} = S_{l}^{T}, l = 0, \dots, k$$

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

# 5.2 Grasp Statics

26

#### **Theorem 2:**

Chapter 5 Multifingered Hand Modeling and Control

Introduction

#### **Grasp Statics**

Kinematics of Contact

Hand Kinematic:

Grasp Planning

Grasp Force Optimizatior

Coordinated Control The force-feasibility problem for a given  $F_o \in \mathbb{R}^6$  is solvable iff  $A_{\tilde{P}}(w) = \{w \in \mathbb{R}^k | \tilde{S}_0 + \sum_{l=1}^k \tilde{S}_l w_l > 0\}$  is non-empty.

♦ Review: LMI Feasibility Problem as Optimization Problem

 $Q \ge 0 \Leftrightarrow \exists t \le 0 \text{ s.t. } Q + tI \ge 0$  $\Leftrightarrow t \ge -\lambda_{\min}(Q)$  $\Leftrightarrow \lambda_{\min}(Q) \ge 0$ 

#### Problem 2': min t

subject to  $Q(x) + tI \ge 0$ If  $t^* \le 0$ , then the LMI is feasible.

27

# □ Constructive force-closure for PCWF:

Chapter 5 Multifingered Hand Modeling and Control

Introduction

#### Grasp Statics

Kinematics o Contact

Hand Kinematio

Grasp Planning

Grasp Force Optimization

Coordinated Control  $G = \begin{bmatrix} n_{c_1} & \cdots & n_{c_k} \\ p_{c_1} \times n_{c_1} & \cdots & p_{c_k} \times n_{c_k} \end{bmatrix}, FC = \{x \in \mathbb{R}^k | x_i \ge 0\}$   $G(FC) = \mathbb{R}^6 \Leftrightarrow \text{Positive linear combination of column of } G = \mathbb{R}^6$ **Definition:** 

- $v_1, ..., v_k, v_i \in \mathbb{R}^p$  is positively dependent if  $\exists \alpha_i > 0$  such that  $\sum \alpha_i v_i = 0$
- $v_1, ..., v_k, v_i \in \mathbb{R}^n$  positively span  $\mathbb{R}^n$  if  $\forall x \in \mathbb{R}^n, \exists \alpha_i > 0$ , such that  $\sum \alpha_i v_i = x$

#### **Definition:**

- A set K is convex if  $\forall x, y \in K, \lambda x + (1 \lambda)y \in K, \lambda \in [0, 1]$
- Given  $S = v_1, \dots, v_k, v_i \in \mathbb{R}^p$ , the convex hull of S:  $co(S) = \{v = \sum \alpha_i v_i, \sum \alpha_i = 1, \alpha_i \ge 0\}$

**Property 4:** 

28

#### Chapter 5 Multifingered Hand Modeling and Control

Introduction

#### Grasp Statics

Kinematics of Contact

Hand Kinematic

Grasp Planning

Grasp Force Optimization

Coordinated Control

# Let G = {G<sub>1</sub>,..., G<sub>k</sub>}, the following are equivalent: (G, FC) is force-closure. The columns of G positively span ℝ<sup>p</sup>, p = 3, 6 The convex hull of G<sub>i</sub> contains a neighborhood of the origin. There does not exist a vector v ∈ ℝ<sup>p</sup>, v ≠ 0 s.t.

 $\forall i = 1, \ldots, k, \nu \cdot G_i \geq 0$ 



# **5.3 Kinematics of Contact**

Chapter 5 Multifingered Hand Modeling and Control

Introduction

**Grasp Statics** 

#### Kinematics of Contact

Hand Kinematics

Grasp Planning

Grasp Force Optimization

Coordinated Control

$$\Box Surface Model:$$

$$c: U \subset \mathbb{R}^2 \to \mathbb{R}^3, c(U) \subset S$$

$$c_u = \frac{\partial c}{\partial u} \in \mathbb{R}^3$$

$$c_v = \frac{\partial c}{\partial v} \in \mathbb{R}^3$$





First Fundamental form: 
$$I_p = \begin{bmatrix} c_u^T c_u & c_u^T c_v \\ c_v^T c_u & c_v^T c_v \end{bmatrix}$$

29

#### **5.3 Kinematics of Contact**

30

Chapter 5 Multifingered Hand Modeling and Control

Introduction

Grasp Statics

Kinematics of Contact

Hand Kinematic:

Grasp Planning

Grasp Force Optimization

Coordinated Control Orthogonal Coordinates Chart:  $c_u^T c_v = 0$  (assumption)  $I_p = \begin{bmatrix} \|c_u\|^2 & 0 \\ 0 & \|c_v\|^2 \end{bmatrix} = M_p \cdot M_p$ Metric tensor:  $M_p = \begin{bmatrix} \|c_u\| & 0 \\ 0 & \|c_v\| \end{bmatrix}$ Gauss map:

$$N: S \to s^2: N(u, v) = \frac{c_u \times c_v}{\|c_u \times c_v\|} := n$$

2nd Fundamental form:

$$II_{p} = \begin{bmatrix} c_{u}^{T}n_{u} & c_{u}^{T}n_{v} \\ c_{v}^{T}n_{u} & c_{v}^{T}n_{v} \end{bmatrix}, n_{u} = \frac{\partial n}{\partial u}, n_{v} = \frac{\partial n}{\partial v}$$

#### **5.3 Kinematics of Contact**

31

Chapter 5 Multifingered Hand Modeling and Control

Introductio

Grasp Statics

Kinematics of Contact

Hand Kinematic:

Grasp Planning

Grasp Force Optimization

Coordinated Control

Curvature tensor:  

$$K_{p} = M_{p}^{-T} \Pi_{p} M_{p}^{-1} = \begin{bmatrix} \frac{c_{u}^{T} n_{u}}{\|c_{u}\|^{2}} & \frac{c_{u}^{T} n_{v}}{\|c_{u}\|\|c_{v}\|} \\ \frac{c_{v}^{T} n_{u}}{\|c_{u}\|\|c_{v}\|} & \frac{c_{v}^{T} n_{v}}{\|c_{v}\|^{2}} \end{bmatrix}$$
Gauss frame:  

$$[x, y, z] = \begin{bmatrix} \frac{c_{u}}{\|c_{u}\|} & \frac{c_{v}}{\|c_{v}\|} & n \end{bmatrix}, K_{p} = \begin{bmatrix} x_{p}^{T} \\ y^{T} \end{bmatrix} \begin{bmatrix} \frac{n_{u}}{\|c_{u}\|} & \frac{n_{v}}{\|c_{v}\|} \end{bmatrix}$$
Torsion form:  

$$T_{p} = y^{T} \begin{bmatrix} \frac{x_{u}}{\|c_{u}\|} & \frac{x_{v}}{\|c_{v}\|} \end{bmatrix}$$

 $(M_p, K_p, T_p)$ :Geometric parameter of the surface.

# **5.3 Kinematics of Contact**

#### $\diamond$ *Example: Geometric parameters of a sphere in* $\mathbb{R}^3$

 $c(u, v) = \begin{bmatrix} \rho \cos u \cos v \\ \rho \cos u \sin v \\ \rho \sin u \end{bmatrix}$  $U = \{ (u, v) | -\frac{\pi}{2} < u < \frac{\pi}{2}, -\pi < v < \pi \}$  $c_{u} = \begin{bmatrix} -\rho \sin u \cos v \\ -\rho \sin u \sin v \\ \rho \cos v \end{bmatrix}$  $c_{v} = \begin{bmatrix} \rho \cos u \sin v \\ \rho \cos u \cos v \\ \rho \cos u \cos v \end{bmatrix}$ Kinematics of Contact  $c_{\mu}^{T}c_{\nu}=0$  $K = \begin{bmatrix} \frac{1}{\rho} & 0\\ 0 & \frac{1}{\rho} \end{bmatrix}, M = \begin{bmatrix} \rho & 0\\ 0 & \rho \cos u \end{bmatrix}, T = \begin{bmatrix} 0 & \frac{\tan v}{\rho} \end{bmatrix}$ 

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

#### **5.3 Kinematics of Contact**

33

#### □ Gauss Frame:

- Chapter 5 Multifingered Hand Modeling and Control
- Introduction
- Grasp Static

#### Kinematics of Contact

- Hand Kinematic
- Grasp Planning
- Grasp Force Optimization
- Coordinated Control

$$p_{oc}(t) = p(t) = c(\alpha(t)), R_{oc}(t) = [x(t), y(t), z(t)] = \begin{bmatrix} \frac{c_u}{\|c_u\|} & \frac{c_{vx}c_u}{\|c_v\|} \end{bmatrix}$$

$$v_{oc} = R_{oc}^T \dot{p}_{oc}(t) = \begin{bmatrix} x_T^T \\ y_T^T \\ z^T \end{bmatrix} \frac{\partial c}{\partial \alpha} \dot{\alpha} = \begin{bmatrix} x_T^T \\ y_T^T \\ z^T \end{bmatrix} \begin{bmatrix} c_u & c_v \end{bmatrix} \dot{\alpha} = \begin{bmatrix} \|c_u\| & 0 \\ 0 & \|c_v\| \end{bmatrix} = \begin{bmatrix} M\dot{\alpha} \\ 0 \end{bmatrix}$$

$$\hat{\omega}_{oc} = R_{pc}^T \dot{R}_{oc} = \begin{bmatrix} x_T^T \\ y_T^T \\ z^T \end{bmatrix} \begin{bmatrix} \dot{x} & \dot{y} & \dot{z} \end{bmatrix} = \begin{bmatrix} 0 & x^T\dot{y} & x^T\dot{z} \\ y^T\dot{x} & 0 & y^T\dot{z} \\ z^T\dot{x} & z^T\dot{y} & 0 \end{bmatrix}$$

# 5.3 Kinematics of Contact

34

Grasp Statics

#### Kinematics of Contact

Hand Kinematic

Grasp Planning

Grasp Force Optimization ,

Coordinated Control

$$y^{T}\dot{x} = y^{T}[x_{u} x_{v}]\dot{\alpha} = TM\dot{\alpha}$$

$$x_{v}^{T}\dot{z} = \begin{bmatrix} x_{T}^{T} \\ y^{T} \end{bmatrix}\dot{z} = \begin{bmatrix} x_{v}^{T} \\ y^{T} \end{bmatrix}\begin{bmatrix} n_{u} & n_{v} \end{bmatrix}\dot{\alpha} = KM\dot{\alpha}$$

$$\hat{\omega}_{oc} = \begin{bmatrix} 0 & -TM\dot{\alpha} \\ TM\dot{\alpha} & 0 \\ \hline -(KM\dot{\alpha})^{T} & 0 \end{bmatrix}$$

$$v_{oc} = \begin{bmatrix} M\dot{\alpha} \\ 0 \end{bmatrix}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

# **5.3 Kinematics of Contact**

#### Contact Kinematics:

 $p_t \in S_0 \mapsto p_f(t) \in S_f$ 

#### Local coordinate:

 $c_0: U_0 \subset \mathbb{R}^2 \to S_0$  $c_f: U_f \subset \mathbb{R}^2 \to S_f$  $\alpha_0(t) = c_0^{-1}(p_0(t))$  $\alpha_f(t) = c_f^{-1}(p_f(t))$ 



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Angle of contact:  $\phi$ Contact coordinates:  $\eta = (\alpha_f, \alpha_0, \phi)$ 

Chapter 5 Multifingered Hand Modeling and Control

Introduction

Grasp Statics

Kinematics of Contact

Hand Kinematic

Grasp Planning

Grasp Force Optimizatio

Coordinated Control

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

# **5.3 Kinematics of Contact**

Chapter 5 Multifingered Hand Modeling and Control

Introduction

Grasp Statics

#### Kinematics of Contact

Hand Kinematic

Grasp Planning

Grasp Force Optimization

Coordinated Control Rotation about the *z*-axis of  $C_o$  by  $-\phi$  aligns the *x* axis of  $C_f$  with that of  $C_o$ 


## **5.3 Kinematics of Contact**

Kinematics o Contact

Define 
$$L_0(\tau)$$
:  
At  $\tau = t$ ,  $L_0(\tau)$  coincide with the Gauss frame at  $p_0(t)$ .  
 $L_f(\tau)$ : coincide with  $C_f(t)$  at  $\tau = t$   
 $v_{l_0}l_f = (v_x, v_y, v_z)$ ,  
 $\omega_{l_0}l_f = (\omega_x, \omega_y, \omega_z)$ ,  
 $\begin{bmatrix} \omega_x \\ \omega_y \end{bmatrix}$ : Rolling velocities  
 $\begin{bmatrix} v_x \\ v_y \end{bmatrix}$ : Sliding velocities  
 $v_z$ : Linear velocity in the normal direction  
 $V_{l_0l_f} = Ad_{g_{fl_f}}V_{of}$ : Velocity of the finger relative to the object

#### **5.3 Kinematics of Contact**

38

Chapter 5 Multifingered Hand Modeling and Control

Introduction

Grasp Statics

Kinematics of Contact

Hand Kinematic

Grasp Planning

Grasp Force Optimizatior

Coordinated Control Define:  $\tilde{K}_0 = R_{\phi} K_0 R_{\phi}$ : Curvature of O relative to  $C_f$  $K_f + \tilde{K}_0$ : Relative Curvature.

**Theorem 3: Montana Equations of contact** 

$$\begin{cases} \dot{\alpha}_{f} = M_{f}^{-1} (K_{f} + \tilde{K}_{o})^{-1} \left( \begin{bmatrix} -\omega_{y} \\ \omega_{x} \end{bmatrix} - \tilde{K}_{o} \begin{bmatrix} v_{x} \\ v_{y} \end{bmatrix} \right) \\ \dot{\alpha}_{o} = M_{o}^{-1} R (K_{f} + \tilde{K}_{o})^{-1} \left( \begin{bmatrix} -\omega_{y} \\ \omega_{x} \end{bmatrix} + \tilde{K}_{f} \begin{bmatrix} v_{x} \\ v_{y} \end{bmatrix} \right)_{\psi} \\ \dot{\psi} = \omega_{z} + T_{f} M_{f} \dot{\alpha}_{f} + T_{o} M_{o} \dot{\alpha}_{o} \\ v_{z} = 0 \end{cases}$$

### **5.3 Kinematics of Contact**

39

#### **Proof of Theorem 3:**

Chapter 5 Multifingered Hand Modeling and Control

Introduction

Grasp Statics

Kinematics of Contact

Hand Kinematic

Grasp Planning

Grasp Force Optimizatior



## **5.3 Kinematics of Contact**

40

(1). At time t, 
$$P_{l_fc_f} = 0$$
,  $R_{l_fc_f} = I \Rightarrow V_{l_oc_f} = V_{l_ol_f} + V_{l_fc_f}$   
(2)  $p_{c_oc_f} = 0 \Rightarrow V_{l_oc_f} = \begin{bmatrix} R_{c_oc_f}^T & 0 \\ 0 & R_{c_oc_f}^T \end{bmatrix} V_{l_oc_o} + V_{c_oc_f}$   
 $\Rightarrow V_{l_ol_f} + V_{fc_f} = \begin{bmatrix} R_{c_oc_f}^T & 0 \\ 0 & R_{c_oc_f}^T \end{bmatrix} V_{oc_o} + V_{c_oc_f}$   
 $p_{c_oc_f} = 0 \Rightarrow V_{c_oc_f} = 0$   $R_{c_oc_f} = \begin{bmatrix} R_{\psi} & 0 \\ 0 & -1 \end{bmatrix} \Rightarrow \omega_{c_oc_f} = \begin{bmatrix} 0 \\ 0 \\ \psi \end{bmatrix}$   
 $V_{l_ol_f} = \begin{bmatrix} \frac{V_x}{V_y} \\ \frac{V_z}{\omega_z} \\ \frac{\omega_y}{\omega_z} \end{bmatrix}, V_{f_{c_f}} = \begin{bmatrix} M_f \dot{\alpha}_f \\ 0 \end{bmatrix}$   
 $\hat{\omega}_{fc_f} = \begin{bmatrix} 0 & -T_f M_f \dot{\alpha}_f \\ T_f M_f \dot{\alpha}_f & 0 \end{bmatrix}$ 

Chapter 5 Multifingered Hand Modeling and Control

Introduction

Grasp Statics

Kinematics of Contact

Hand Kinematic:

Grasp Planning

Grasp Force Optimization

## **5.3 Kinematics of Contact**

41

Chapter 5 Multifingered Hand Modeling and Control

Introduction

Grasp Statics

Kinematics of Contact

Hand Kinematics

Grasp Planning

Grasp Force Optimizatior

$$\begin{aligned} v_{oc_o} &= \begin{bmatrix} M_o \dot{\alpha}_o \\ 0 \end{bmatrix}, \quad \hat{\omega}_{oc_o} = \begin{bmatrix} 0 & -T_o M_o \dot{\alpha}_o & K_o M_o \dot{\alpha}_o \\ T_o M_o \dot{\alpha}_o & 0 & K_o M_o \dot{\alpha}_o \\ -(K_o M_o \dot{\alpha}_o)^T & 0 \end{bmatrix} \\ \text{Linear component:} \begin{bmatrix} M_f \dot{\alpha}_f \\ 0 \end{bmatrix} + \begin{bmatrix} v_x \\ v_y \\ v_z \end{bmatrix} = \begin{bmatrix} R_\psi M_o \dot{\alpha}_o \\ 0 \end{bmatrix} \\ \begin{bmatrix} K_f M_f \dot{\alpha}_f \\ T_f M_f \dot{\alpha}_f \end{bmatrix} + \begin{bmatrix} \omega_y \\ -\omega_x \\ \omega_z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \dot{\psi} \end{bmatrix} - \begin{bmatrix} R_\psi K_o M_o \dot{\alpha}_o \\ T_o M_o \dot{\alpha}_o \end{bmatrix} \\ \Rightarrow \text{Theorem result} \end{aligned}$$

## **5.3 Kinematics of Contact**

42

#### *◊ Example: A sphere rolling on a plane*



- Chapter 5 Multifingered Hand Modeling and Control
- Introduction
- Grasp Statics

#### Kinematics of Contact

- Hand Kinematic:
- Grasp Planning
- Grasp Force Optimization
- Coordinated Control

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

#### **5.3 Kinematics of Contact**

43

Chapter 5 Multifingered Hand Modeling and Control

**Grasp Statics** 

Kinematics of Contact

Hand Kinematic

Grasp Planning

Grasp Force Optimization

Coordinated Control

$$\begin{bmatrix} \dot{u}_{f} \\ \dot{v}_{f} \\ \dot{u}_{o} \\ \dot{v}_{o} \\ \dot{\psi} \end{bmatrix} = \begin{bmatrix} 0 \\ -\rho \sin \psi \\ -\rho \cos \psi \\ -\tan u_{f} \end{bmatrix} \omega_{x} + \begin{bmatrix} -1 \\ 0 \\ -\rho \cos \psi \\ \rho \sin \psi \\ 0 \end{bmatrix} \omega_{y}$$
$$\dot{\eta} = g_{1}(\eta) \underbrace{\omega_{x}}_{u_{1}(t)} + g_{2}(\eta) \underbrace{\omega_{y}}_{u_{2}(t)} (*)$$

Q:Given  $\eta_0, \eta_f$ , how to find a path u:o[0, T] $\rightarrow \mathbb{R}^2$ so that solution of (\*) links  $\eta_0$  to  $\eta_f$ ? A question of nonholonomic motion planning!

### **5.4 Hand Kinematics**

Chapter 5 Multifingered Hand Modeling and Control Introduction

А

Grasp Statics

Kinematics of Contact

Hand Kinematics

Grasp Planning

Grasp Force Optimization

Coordinated Control

$$g_{po} = g_{pf_i}(\theta_i)g_{f_i l_f_i}g_{l_{f_i} l_o_i}g_{l_{o_i}}$$
$$V_{po} = \mathrm{Ad}_{g_{f_i o}^{-1}}V_{pf_i} + \mathrm{Ad}_{g_{l_{o_i} o}^{-1}}V_{l_{f_i} l_{o_i}}$$
$$\mathrm{d}_{g_{l_{o_i} o}}V_{po} = \mathrm{Ad}_{g_{f_i l_{o_i}}^{-1}}V_{pf_i} + V_{l_{f_i} l_{o_i}}$$

44

**PCWF:** 
$$V_z = 0 \Rightarrow [0 \ 0 \ 1 \ 0 \ 0 \ 0] V_{l_{f_i} l_{o_i}} = B_i^T V_{l_{f_i} l_{o_i}} = 0$$

$$B_i^T \operatorname{Ad}_{g_{l_{o_i}o}} V_{po} = \operatorname{Ad}_{g_{f_i l_{o_i}}} \underbrace{V_{pf_i}}_{J_i(\theta_i)\dot{\theta}}$$



э

・ロト ・聞ト ・ヨト ・ヨト

45

## **5.4 Hand Kinematics**



Kinematics of Contact

#### Hand Kinematics

Grasp Planning

Grasp Force Optimization

Coordinated Control

$$\begin{bmatrix} B_1^T \operatorname{Ad}_{g_{l_{o_i}o}} \\ \vdots \\ B_k^T \operatorname{Ad}_{g_{l_{o_k}o}} \end{bmatrix} V_{po} = \begin{bmatrix} \operatorname{Ad}_{g_{f_i l_{o_1}}} J_1(\theta_1) \\ & \ddots \\ \operatorname{Ad}_{g_{f_k l_{o_k}}} J_k(\theta_k) \end{bmatrix} \begin{bmatrix} \dot{\theta}_1 \\ \vdots \\ \dot{\theta}_k \end{bmatrix}$$
$$\boxed{G^T(\eta) V_{po} = J_h(\theta, x_0, \eta) \dot{\theta}}$$
$$\theta = (\theta_1, \dots, \theta_k) \in \mathbb{R}^n, n = \sum_{i=1}^k n_i, J_h \in \mathbb{R}^{m \times n} \text{: Hand Jacobian}$$

## **Definition:** $\Omega = (G, FC, J_h)$ is called a multifingered grasp.



## 5.4 Hand Kinematics

#### **Definition:**

Hand Kinematics

A multifingered grasp  $\Omega = (G, FC, J_h)$  is manipulable at a configuration  $(\theta, x_0)$  if for any object motion,  $V_{po} \in \mathbb{R}^6$ ,  $\exists \dot{\theta} \in \mathbb{R}^n$ s.t.  $G^T V_{po} = J_h \dot{\theta}$ .

#### **Proposition:**

 $\Gamma$  is manipulable at  $(\theta, x^{\circ})$  iff  $\operatorname{Im}(G^T) \subset \operatorname{Im}(J_h(\theta, x_0))$ 





not force-closure

manipulable





not force-closure not manipulable

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ のへぐ

## **5.4 Hand Kinematics**

47

**Grasp Statics** 

Kinematics of Contact

Hand Kinematics

Grasp Planning

Grasp Force Optimization

| Table 5.4: | Grasp | properties. |
|------------|-------|-------------|
|------------|-------|-------------|

| Property          | Definition                                                                   | Description                                          |
|-------------------|------------------------------------------------------------------------------|------------------------------------------------------|
| Force-closure     | Can resist any applied<br>wrench                                             | $G(FC) = \mathbb{R}^p$                               |
| Manipulable       | Can accommodate any object motion                                            | $\mathcal{R}(G^T) \subset \mathcal{R}(J_h)$          |
| Internal forces   | Contact forces $f_N$ which cause no net object                               | $f_N \in \mathcal{N}(G) \cap \operatorname{int}(FC)$ |
| Internal motions  | wrench<br>Finger motions $\dot{\theta}_N$<br>which cause no object<br>motion | $\dot{\theta}_N \in \mathcal{N}(J_h)$                |
| Structural forces | Object wrench $F_I$ which<br>causes no net joint<br>torques                  | $G^+F_I \in \mathcal{N}(J_h^T)$                      |

## **5.4 Hand Kinematics**



# ◊ Example: Two SCARA fingers grasping a box Soft finger $G = \begin{bmatrix} 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & -1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ -r & 0 & 0 & 0 & 0 & +r & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & -1 \\ 0 & +r & 0 & 0 & -1 & 0 & 0 \end{bmatrix}$ Hand $B_{c_i} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ Kinematics $R_{po} = I, p_{po} = \begin{bmatrix} 0\\0\\a \end{bmatrix}$

## **5.4 Hand Kinematics**

Chapter 5 Multifingered Hand Modeling and Control

Grasp Statics

Kinematics of Contact

Hand Kinematics

Grasp Planning

Grasp Force Optimizatio

Coordinated Control

$$\begin{split} J_h &= \begin{bmatrix} J_{11} & 0 \\ 0 & J_{22} \end{bmatrix} \\ J_{11} &= \begin{bmatrix} 0 & 0 & 0 & 1 \\ -b+r & -b+r+l_1c_1 & -b+r+l_1c_1+l_2c_{12} & 0 \\ 0 & l_1s_1 & l_1s_1+l_2s_{12} & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \\ J_{22} &= \begin{bmatrix} b-r & b-r+l_3c_3 & b-r+l_3c_3+l_4c_{34} & 0 \\ 0 & 0 & 0 & 1 \\ 0 & -l_3s_3 & -l_3s_3-l_4s_{34} & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \end{split}$$

The grasp is not manipulable, as

$$G^{T}\begin{bmatrix} 0\\0\\0\\0\\1\\0\end{bmatrix} = \begin{bmatrix} 0\\0\\0\\-1\\0\\-1\end{bmatrix} \in \operatorname{Im}(J_{h}), \dot{\theta}_{N_{1}} = \begin{bmatrix} 0\\0\\1\\0\\0\\0\\0\\0\\0\end{bmatrix}, \dot{\theta}_{N_{2}} = \begin{bmatrix} 0\\0\\0\\0\\0\\0\\1\\0\end{bmatrix}$$

## 5.5 Grasp Planning

50

Chapter 5 Multifingered Hand Modeling and Control

Introduction

Grasp Statics

Kinematics of Contact

Hand Kinematio

#### Grasp Planning

Grasp Force Optimization

Coordinated Control

#### □ **Bounds on number of required contacts:** Consider PCWF, let

$$\bigwedge(\Sigma) = \left\{ \left[ \begin{array}{c} n_{c_i} \\ p_{c_i} \times n_{c_i} \end{array} \right] \middle| c_i \in \Sigma \right\}$$

be the set of all wrenches, where  $n_{c_i}$  is inward normal.

#### **Definition: Exceptional surface**

The convex hull of  $\wedge(\Sigma)$  does not contain a neighborhood of *o* in  $\mathbb{R}^p$ .

E.g. a Sphere or a circle.

#### **Theorem 4: Caratheodory**

If a set  $X = (v_1, \ldots, v_k)$  positively spans  $\mathbb{R}^p$ , then  $k \ge p + 1$ 



## 5.5 Grasp Planning

51

Chapter 5 Multifingered Hand Modeling and Control

\_ \_ \_

Kinematics of Contact

Hand Kinematio

#### Grasp Planning

Grasp Force Optimization

Coordinated Control

#### $\Rightarrow$ Lower bound on the number of fingers.



Figure 5.11: Sets of vectors which positively span  $\mathbb{R}^2$ .

#### **Theorem 5: Steinitz**

If  $S \subset \mathbb{R}^p$  and  $q \in int(co(S))$ , then there exists  $X = (v_1, ..., v_k) \subset S$  such that  $q \in int(co(X))$  and  $k \leq 2p$ .

 $\Rightarrow$  upper bound on the number of minimal fingers.

## 5.5 Grasp Planning

Table 5.3: Lower bounds on the number of fingers required to grasp an object.

Introduction

Grasp Statics

Kinematics of Contact

Hand Kinematio

#### Grasp Planning

Grasp Force Optimization

Coordinated Control

| Space   | Object type     | Lower | Upper | FPC | PCWF | SF |
|---------|-----------------|-------|-------|-----|------|----|
| Planar  | Exceptional     | 4     | 6     | n/a | 3    | 3  |
| (p = 3) | Non-exceptional |       |       | 4   | 3    | 3  |
| Spatial | Exceptional     | 7     | 12    | n/a | 4    | 4  |
| (p = 6) | Non-exceptional |       |       | 12  | 4    | 4  |
|         | Polyhedral      |       |       | 7   | 4    | 4  |

## □ Constructing force-closure grasps:

#### Theorem 1: Planar antipodal grasp

A planar grasp with two point contacts with friction is force-closure iff the line connecting the contact point lies inside both friction cones.

## 5.5 Grasp Planning

Chapter 5 Multifingered Hand Modeling and Control

Introduction

Grasp Statics

Kinematics of Contact

Hand Kinematic

#### Grasp Planning

Grasp Force Optimization

Coordinated Control

#### Theorem 2: Spatial antipodal grasps

A spatial grasp with two soft-finger contacts is force-closure iff the line connecting the contact points lies inside both friction cones.

#### **Problem 4: Optimal Grasp Synthesis**

Plan a set of contact points on the object so that (G, FC) is force closure and optimal in some sense.

#### □ Idea: construct a quality function:

$$\psi: \alpha = \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_k \end{bmatrix} \in \mathbb{R}^{2k} \to \mathbb{R}$$

with computable gradient such that the optimal solution of  $\psi$  is also force closure.



## 5.5 Grasp Planning

54

Chapter 5 Multifingered Hand Modeling and Control

Introduction

Grasp Statics

Kinematics of Contact

Hand Kinematio

#### Grasp Planning

Grasp Force Optimization

Coordinated Control

## □ Grasp quality functions:

Two-finger grasps (Hong et al 90 & Chen and Burdick 93)

$$E = \frac{1}{2} \|X(\alpha_{o1}) - X(\alpha_{o2})\|^2$$

Solution: antipodal grasp



▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

<ロト < 同ト < 回ト < 回ト = 三日

## 5.5 Grasp Planning

55

Chapter 5 Multifingered Hand Modeling and Control

Introduction

Grasp Statics

Kinematics of Contact

Hand Kinematic

#### Grasp Planning

Grasp Force Optimization

Coordinated Control Three-fingered grasps of spherical objects

$$E = \frac{1}{4} (\|X(\alpha_{o3}) - X(\alpha_{o1})\|^2 \|X(\alpha_{o3}) - X(\alpha_{o2})\|^2 - ((X(\alpha_{o3}) - X(\alpha_{o1})) \cdot (X(\alpha_{o3}) - X(\alpha_{o2})))^2)$$

#### Solution: symmetric grasp

Problem: not general w.r.t. no. of fingers and object geometry

## 5.5 Grasp Planning

56

Chapter 5 Multifingered Hand Modeling and Control Introduction

Grasp Statics

Kinematics of Contact

Hand Kinematic

Grasp Planning

Grasp Force Optimization

Coordinated Control Max-transfer problem (Ferrari and Canny 92)  $\vec{\alpha}_o = (\alpha_{o1}^T, \dots, \alpha_{ok}^T)^T$   $g_0(\vec{\alpha}_o) = \min_{\|F_o\| = 1}^{G_x = F_o, \ \|x\|}$ Finger force x Grasp map  $G(\vec{\alpha}_o)$ Object wrench  $F_o$ 

Problem: Computational difficulties.

## 5.5 Grasp Planning

Chapter 5 Multifingered Hand Modeling and Control

Introduction

Grasp Statics

Kinematics of Contact

Hand Kinematic:

Grasp Planning

Grasp Force Optimization

Coordinated Control Min-analytic-center problem:

Analytic center  $x^*$ : (Boyd et. al. 1996)

 $\min_{x} \log \det P(x)^{-1}$ s.t. Gx = FP(x) > 0

Interpretation: the grasping force *x* which is farthest from the boundary of the friction cone.

$$g(\vec{\alpha}_o) = \max_{\substack{F_o^T A F_o = I_{P(x)}^{Gx = F_o,} \\ P(x) > 0}} \log \det P(x)^{-1}$$

A: Task requirement

Interpretation: optimize worst case analytic center.

## 5.5 Grasp Planning

58

Chapter 5 Multifingered Hand Modeling and Control

Grasp Statics

Kinematics of Contact

Hand Kinematic

#### Grasp Planning

Grasp Force Optimization

Coordinated Control

□ Simplification for real-time optimization: Center of FC:  $L = \{\xi t | \xi = (0, 0, 1, \dots, 0, 0, 1)^T, t > 0\}(PCWF)$  $L = \{\xi t \mid \xi = (0, 0, 1, 0, \dots, 0, 0, 1, 0)^T, t > 0\}(SFCE)$ Solution set:  $Aff = \{x | Gx = f_0\}$  $x^* \approx$  the intersection point between *Aff* and *L*.  $x^* \approx \frac{\zeta}{\sqrt{\xi^T G^T A G \xi}},$ ξ Aff  $\psi(\vec{\alpha}_o) \approx \log \frac{\left(\xi^T G^T A G \xi\right)^k}{\prod_{i=1}^k \mu_i^2}$ 

#### **Problem 4: (simplified)**

Find  $\vec{\alpha}_o$  s.t. it minimizes  $\psi_1(\vec{\alpha}_o) = \xi^T G^T A G \xi$ 

Note: Optimization of  $\psi_1$  leads to antipodal and symmetric grasps, respectively.

59

## 5.5 Grasp Planning

Chapter 5 Multifingered Hand Modeling and Control

Introduction

Grasp Statics

Kinematics o Contact

Hand Kinemati

#### Grasp Planning

Grasp Force Optimization

Coordinated Control

# Simulation results: Example: A 3-fingered hand manipulating an ellipsoid

• Minimize  $\psi(\vec{\alpha}_o)$ 

 $C(\alpha_{o_i}) = \begin{bmatrix} a \cos u_{oi} \cos v_{oi} \\ b \cos u_{oi} \sin v_{oi} \\ c \sin u_{oi} \end{bmatrix}$ 

$$c = 3a = 3b = 3$$



## 5.5 Grasp Planning



#### Initial contacts (not force closure)

Multifingered Hand Modeling and Control

Introduction

Grasp Statics

Kinematics of Contact

Hand Kinematio

#### Grasp Planning

Grasp Force Optimization

Coordinated Control

# $\begin{aligned} &\alpha_{o1} = (0,0)^T \\ &\alpha_{o2} = (0,\pi/4)^T \\ &\alpha_{o3} = (\pi/8, -\pi/4)^T \end{aligned}$



#### Advantages of the quality function approach:

- Objects with arbitrary geometry
- Arbitrary number of fingers
- Ability for real-time contact points servoing

## 5.6 Grasp Force Optimization

61

## □ Grasping Force Optimization:

#### **Problem 5:**

Given  $F_o \in \mathbb{R}^p$ , find  $x \in FC$  s.t.  $Gx = F_o$  and x minimizes some suitable cost function.

#### Other Applications

- Optimal force distribution for multilegged robots;
- Force control for cable-driven parallel robots



Legged robot



#### parallel robot

9 Q P

Chapter 5 Multifingered Hand Modeling and Control

Introduction

Grasp Statics

Kinematics of Contact

Hand Kinematic

Grasp Planning

Grasp Force Optimization

## 5.6 Grasp Force Optimization

62

#### □ Wrench balance constraint:

Sketch of Proof for (\*)

$$Gx = F_o = (f_{o_1}, \dots, f_{o_6})^T \Leftrightarrow \operatorname{Tr}(B_i P(z)) = f_{o_i}, i = 1, \dots, 6 \qquad (*)$$

 $\Omega_P$  is convex (intersection of a convex cone with a convex hyper-

R

Grasp Force Optimization

plane)

$$\begin{array}{c} {}^{2k\times 2k} \mapsto P(x) = \begin{bmatrix} S_{1}^{1} & & \\ & & 0 \end{bmatrix} x_{1} + \begin{bmatrix} S_{1}^{2} & & \\ & & 0 \end{bmatrix} x_{2} \\ + \begin{bmatrix} S_{1}^{3} & & \\ & & 0 \end{bmatrix} x_{3} + \dots + \begin{bmatrix} 0 & 0 & \\ & 0 & S_{k}^{s} \end{bmatrix} x_{m}, m = 3k \\ S_{1}^{1} = \begin{bmatrix} 1 & 0 & \\ 0 & -1 \end{bmatrix}, S_{1}^{2} = \begin{bmatrix} 0 & 1 & \\ 1 & 0 \end{bmatrix}, S_{1}^{3} = \begin{bmatrix} \mu_{1} & 0 & \\ 0 & \mu_{1} \end{bmatrix} \\ Gx = F_{0} \Rightarrow \begin{bmatrix} G_{11} & \cdots & G_{1m} \\ \vdots & \ddots & \vdots \\ G_{61} & \cdots & G_{6m} \end{bmatrix} \begin{bmatrix} x_{1} & \\ \vdots & x_{m} \end{bmatrix} = \begin{bmatrix} f_{01} \\ \vdots \\ f_{06} \end{bmatrix}$$

## 5.6 Grasp Force Optimization

63

Chapter 5 Multifingered Hand Modeling and Control

Introduction

Grasp Statics

Kinematics of Contact

Hand Kinematic

Grasp Planning

Grasp Force Optimization

Coordinated Control

$$\begin{cases} \operatorname{Tr}(B_{1}P(x)) = f_{o1} \\ \vdots \\ \operatorname{Tr}(B_{6}P(x)) = f_{o6} \end{cases} = \begin{bmatrix} B_{1}^{1} & 0 \\ 0 & B_{1}^{k} \end{bmatrix} \in \mathbb{R}^{2k \times 2k} \\ \begin{cases} \operatorname{Tr}(B_{1}^{1}S_{1}^{1}) = G_{11} \\ \operatorname{Tr}(B_{1}^{1}S_{1}^{2}) = G_{12}, B_{1}^{1} = \begin{bmatrix} b_{11} & b_{12} \\ b_{12} & b_{22} \end{bmatrix} \Rightarrow \begin{cases} b_{11} - b_{22} = G_{11} \\ 2b_{12} = G_{12} \\ D_{12} = G_{12} \end{cases} \\ \operatorname{Tr}(B_{1}^{1}S_{1}^{3}) = G_{13} \end{cases} \Rightarrow B_{1}^{1} = \begin{bmatrix} \frac{1}{2}(G_{11} + \frac{G_{12}}{\mu_{1}}) & \frac{G_{12}}{2} \\ \frac{G_{12}}{2} & \frac{1}{2}(\frac{G_{13}}{\mu_{1}} - G_{11}) \end{bmatrix}$$

The rest of  $B_1^i$ , i = 2, ..., k and thus  $B_j^i$ , j = 2, ..., 6 can be figured out in a similar manner.

## 5.6 Grasp Force Optimization

64

□ Wrench balance constraint (continued):

$$\Omega_P = \{x \in \mathbb{R}^n | P(x) > 0, \operatorname{Tr}(B_i P) = f_{o_i}, i = 1, \dots, 6\}$$

 $\Omega_P$  is convex (intersection of a convex cone with a convex hyperplane)

Problem 3 (a): Max-det Problem  $\min \Phi(P) = \operatorname{Tr}(CP) + \log \det P^{-1}$ subject to  $\operatorname{Tr}(B_iP) = f_{oi}, i = 1, \dots, 6$  P > 0or  $\min \Phi(z) = C^T z + \log \det P^{-1}(z)$ subject to  $Gx = F_o$   $P(x) = S_0 + \sum_{i=1}^m x_i S_i > 0, i = 1, \dots, m$   $c_i = \operatorname{Tr}(CS_i)$ 

Chapter 5 Multifingered Hand Modeling and Control

Introduction

Grasp Statics

Kinematics of Contact

Hand Kinematic

Grasp Planning

Grasp Force Optimization

## 5.6 Grasp Force Optimization

65

Chapter 5 Multifingered Hand Modeling and Control

Introduction

Grasp Statics

Kinematics o Contact

Hand Kinematic

Grasp Planning

Grasp Force Optimization

Coordinated Control

Configuration space 
$$S_{++}^n = \{P \in \mathbb{R}^{n \times n} | P^T = P, P > 0\}$$
: Riemannian  
manifold of dimension  $\frac{n(n+1)}{2}$   
 $T_p S_{++}^n = \{\xi \in \mathbb{R}^{n \times n} | \xi^T = \xi\} = S^n$ :  $n \times n$  symmetric  
matrices.  
Euclidean metric  $\langle , \rangle : T_p S_{++}^n \times T_p S_{++}^n \mapsto \mathbb{R}^n, (\xi, \eta) \mapsto \text{Tr}(\xi\eta)$   
 $\diamond$  *Example*:  $S_{++}^2 = \{P \in \mathbb{R}^{2 \times 2} | P = P^T, P > 0\}$   
 $\{P = \begin{bmatrix} P_{12} & P_{12} \\ P_{12} & P_{22} \end{bmatrix} | P > 0\} \Leftrightarrow P_{11} > 0, P_{11}P_{22} - P_{12}^2 > 0$   
 $\Rightarrow \{P | P > 0\} \cong \{\begin{bmatrix} P_{11} & P_{12} \\ P_{22} & P_{22} \end{bmatrix} \in \mathbb{R}^3 | P_{11} > 0, P_{11}P_{22} - P_{12}^2 > 0\}$ : open set  
in  $\mathbb{R}^3$   
 $T_P S_{++}^2 = \{B \in \mathbb{R}^{2 \times 2} | B = B^T\}$ : vector space of dimension 3.  
 $\ll B, C \gg = \text{Tr}(BC) = b_{11}c_{11} + b_{12}c_{12} + b_{12}c_{12} + b_{22}c_{22}$   
Dimension of  $S^n: \frac{n^2 - n}{2} + n = \frac{n^2 + n}{2}$ 

my m. T

## 5.6 Grasp Force Optimization

 $\diamond$  *Example*:  $S^n = T \oplus T^{\perp}$ 

66

Chapter 5 Multifingered Hand Modeling and Control

Introduction

Grasp Statics

Kinematics of Contact

Hand Kinematic

Grasp Planning

Grasp Force Optimization

Coordinated Control Assumption:  $\{B_i\}, i = 1, ..., 6$  are linearly independent. By Gram-Schmidt process, orthonormalize the  $B_i$ 's if necessary. Thus  $\operatorname{Tr}(B_iB_j) = \begin{cases} 1, i = j\\ 0, i \neq j \end{cases}$ Let  $T = \{\eta \in S^n | \operatorname{Tr}(B_i\eta) = 0, i = 1, ..., 6\}$  be the subspace of constrained velocities, with dim $(T) = \frac{1}{2}n(n+1) - 6$  (dim  $T_qQ$ )  $T^{\perp} = \operatorname{span}\{B_1, ..., B_6\}$  ( $T_qQ^{\perp}$ )

**Property 6:** 

•  $\Phi(P)$  is a convex function

#### • $\Omega_z$ is a convex set

## 5.6 Grasp Force Optimization

1.

67

æ

Let 
$$Q \in S_{++}^n$$
 be s.t.  $P = Q^2$ ,  $P(t) = Qe^{Q^{-1}\xi tQ^{-1}}Q$  satisfies:

C 11

$$P(0) = P, \dot{P}(0) = \xi$$

Introduction

Grasp Statics

Kinematics o Contact 1

.1

Hand Kinematic

Grasp Planning

Grasp Force Optimization

Coordinated Control

$$\Rightarrow D\Phi(p)(\xi) = \frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0} \Phi(P(t)) = \mathrm{Tr}(C\xi) - \mathrm{Tr}(P^{-1}\xi)$$

c

where the second term follows from:  

$$\frac{d}{dt}\Big|_{t=0} \log \det P^{-1}(t) = -\frac{d}{dt}\Big|_{t=0} \log \det P(t)$$

$$= -\frac{d}{dt}\Big|_{t=0} (\log \det Q + \log \det e^{Q^{-1}\xi tQ^{-1}})$$

$$= -\frac{d}{dt}\Big|_{t=0} \log e^{\operatorname{Tr}(Q^{-1}\xi tQ^{-1})}$$

$$= -\frac{d}{dt}\Big|_{t=0} \operatorname{Tr}(Q^{-1}\xi tQ^{-1}) = -\operatorname{Tr}(Q^{-1}\xi Q^{-1}) = -\operatorname{Tr}(P^{-1}\xi)$$

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

#### 5.6 Grasp Force Optimization

68

Chapter 5 Multifingered Hand Modeling and Control Introduction

Grasp Statics

Kinematics of Contact

Hand Kinematic

Grasp Planning

Grasp Force Optimization

Coordinated Control  $\Rightarrow \nabla \Phi(P) \in S^n$  is defined by

 $\operatorname{Tr}(\nabla \Phi(P)\xi) = D\Phi(P)(\xi), \,\forall \xi \in S^n$ 

$$\Rightarrow \nabla \Phi(P) = C - P^{-1}$$
$$\Pi : S^{n} \mapsto T : \nabla \Phi(P) \mapsto \nabla_{T} \Phi(P)$$
$$\nabla_{T} \Phi(P) = C - P^{-1} - \sum_{i=1}^{6} \gamma_{i} B_{i},$$
$$\gamma_{i} = \operatorname{Tr}(B_{i}(C - P^{-1})), i = 1, \dots, 6$$

### 5.6 Grasp Force Optimization

69

Chapter 5 Multifingered Hand Modeling and Control

Introduction

Grasp Statics

Kinematics of Contact

Hand Kinematic

Grasp Planning

Grasp Force Optimization

Coordinated Control

## Constraint subspace: $T = \{\eta \in S^n | \operatorname{Tr}(B_i \eta) = 0, j = 1, ..., 6\}$ Euclidean gradient: $\nabla_T \Phi(P) = C - P^{-1} - \sum_{i=1}^6 \gamma_i B_i$ $\gamma_i = \operatorname{Tr}(B_i(C - P^{-1}))$

#### $\Box$ Computation of $D^2\phi(P)$ :

Consider the curve  $P(t) = Qe^{Q^{-1}\eta tQ^{-1}}$ ,  $P(0) = Q^2 = \Gamma$ ,  $\dot{P}(0) = \eta$ . Then,

$$D^{2}\phi(\Gamma)(\xi,\eta) = \frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0} D\phi(P(t))(\xi) = \mathrm{Tr}(\Gamma^{-1}\xi\Gamma^{-1}\eta), \,\forall \xi,\eta \in S^{n}$$

and  $D^2 \phi(P)(\xi, \xi) = \operatorname{Tr}(\Gamma^{-1}\xi\Gamma^{-1}\xi) > 0, \forall \xi \neq 0$  $\Rightarrow \phi(\cdot)$  is a convex function. Define  $\langle \xi, \eta \rangle_g = \operatorname{Tr}(\Gamma^{-1}\xi\Gamma^{-1}\eta)$ 

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

## 5.6 Grasp Force Optimization

70

#### Algorithm 1: Dikin-type Euclidean algorithm (BFM98)

$$P_{k+1} = P_k - \alpha_k \frac{\nabla_T \Phi(P_k)}{\|\nabla_T \Phi(P_k)\|_M},$$
  
$$\|\nabla_T \Phi(P_k)\|_g = \sqrt{Tr(P_k^{-1} \nabla_T \Phi(P_k) P_k^{-1} \nabla_T \Phi(P_k))}$$
  
$$P_k > 0, \alpha_k \in [0, 1] \Rightarrow P_{k+1} > 0$$

Using line-search method for the optimal  $\alpha_k^*$ 

Chapter 5 Multifingered Hand Modeling and Control

Introduction

Grasp Statics

Kinematics o Contact

Hand Kinemati

Grasp Planning

Grasp Force Optimization

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

## 5.6 Grasp Force Optimization

71

## Algorithm 2: Newton algorithm with estimated step size (HHM02)

Multifingered Hand Modeling and Control

Introduction

Grasp Statics

Kinematics of Contact

Hand Kinemati

Grasp Planning

Grasp Force Optimization

Coordinated Control

$$P_{k+1} = P_k - \alpha_k (D^2 \Phi(P_k))^{-1} \nabla_T \Phi(P_k) = P_k - \alpha_k \nabla_T \Phi(P_k)$$
$$\alpha_k = \frac{1 + 2\lambda(P_k) - \sqrt{1 + 4\lambda(P_k)}}{2(\lambda(P_k))^2}, \lambda(P_k) = \sqrt{\operatorname{Tr}(\nabla_T \Phi \nabla T \Phi)}$$

#### □ *LMI Model*:

$$P = P_0 + P_1 x_1 + \dots + P_m x_m \ge 0$$

Elimination of linear constraints  $G \cdot x = F_o$ 

$$x = G^{\dagger}F_{o} + Vy, y \in \mathbb{R}^{m-6}, GV = 0$$
  
$$P = \tilde{P}(y) = \tilde{P}_{0} + \tilde{P}_{1}y_{1} + \dots + \tilde{P}_{m-6}y_{m-6} \ge 0$$

## 5.6 Grasp Force Optimization

72

#### Algorithm 3: Interior point algorithm (HTL00)

Multifingered Hand Modeling and Control

Introduction

Grasp Statics

Kinematics of Contact

Hand Kinematic:

Grasp Planning

Grasp Force Optimization

Coordinated Control

$$\min \Psi(y) = C^T y + \log \det \tilde{P}(y)^{-1}$$
  
subject to  $\tilde{P}(y) \in \mathbb{R}^{n \times n} = \tilde{P}_0 + \tilde{P}_1 y_1 + \dots + \tilde{P}_{m-6} y_{m-6} \ge 0$   
 $F(y) = F_0 + F_1 y_1 + \dots + F_{m-6} y_{m-6} > 0$   
 $c_j = \operatorname{Tr}(C\tilde{P}_j), j = 1, \dots, m-6$ 

Choose  $F_i$  s.t. diag $(\tilde{P}_i, F_i)$ 's are linearly independent for i = 1, ..., m - 6 (e.g.  $F_0 = 1, F_i = 0, i \ge 1$ )

- Solved efficiently using Interior Point Algorithm
- Polynomial-type algorithms w.r.t. the problem dimension (i.e. m 6, n)
## 5.6 Grasp Force Optimization

73

Chapter 5 Multifingered Hand Modeling and Control

Introduction

Grasp Statics

Kinematics of Contact

Hand Kinematic

Grasp Planning

Grasp Force Optimization

Coordinated Control

## □ Initial Point Computation:

#### Problem 5:

Find an initial point *x* or *y* such that P(x) > 0 or  $\tilde{P}(y) > 0$ 

[HTL00]

$$\min e^{T} z = z_{m-6+1} (e = [0 \cdots 0 \ 1]^{T})$$

subject to  $\tilde{P}(z) = 1 \ge 0$ 

 $F(z) = \tilde{P}_0 + \tilde{P}_1 z_1 + \cdots \tilde{P}_{m-6} z_{m-6} + I z_{m-6+1} \ge 0$ 

Solved using the Interior Point Algorithm with initial point  $z = [0, \dots, -\lambda_{\min}(\tilde{P}_0) + \beta]^T, \beta > 0.$ 

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

## 5.6 Grasp Force Optimization

74

Chapter 5 Multifingered Hand Modeling and Control

Introduction

**Grasp Statics** 

Kinematics of Contact

Hand Kinematio

Grasp Planning

Grasp Force Optimization

Coordinated Control

# □ Algorithm analysis & evaluation:

Property 8: Quadratic convergence property

 $d(P_{k+1},P^*) \leq d^2(P_k,P^*)$ 

| algorithms           | No. of iteration | SUN Ultra 60, UNIX |
|----------------------|------------------|--------------------|
| Algorithm 1 (BFM 98) | 5                | 2s/1000 times      |
| Algorithm 2 (HHM 02) | 6                | 3s/1000 times      |
| Algorithm 3 (HTL 00) | 2                | 2s/1000 times      |

75

Chapter 5 Multifingered Hand Modeling and Control

Introduction

Grasp Statics

Kinematics of Contact

Hand Kinematics

Grasp Planning

Grasp Force Optimization

Coordinated Control

#### **Coordinated Motion Generation:**

**Problem 6: Coordinated finger motion generation** Given desired object velocity  $V_{po} \in \mathbb{R}^6$ , find fingertip velocity  $V_{pf_i} \in \mathbb{R}^6$ , that satisfies the non-slippage and the force closure constraints.

#### Kinematics

$$\begin{split} g_{po} &= g_{pf_i} \cdot g_{f_i lf_i} \cdot g_{l_{f_i} l_{o_i}} \cdot g_{l_{o_i} o} \\ V_{po} &= \mathrm{Ad}_{g_{f_i} o}^{-1} V_{pf_i} + \mathrm{Ad}_{g_{l_{o_i} o}}^{-1} V_{lf_i l_{o_i}} \\ \tilde{V}_{pf_i} &= \mathrm{Ad}_{g_{l_{o_i} o}} V_{po} - V_{l_{f_i} l_{o_i}} \quad (*) \\ V_{pf_i} &= \mathrm{Ad}_{g_{f_i} l_{o_i}} \tilde{V}_{pf_i} \end{split}$$



76

э

## 5.7 Coordinated Control

#### Grasp optimization

$$\tilde{V}_{pf_i} = \mathrm{Ad}_{gl_{o_i}o} V_{po} - B_{c_i}^c \left[ \begin{array}{c} \omega_x^i \\ \omega_y^i \end{array} \right]$$

#### constraints

$$B_{c_i}^{c} = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}^{T}$$

#### Contact equation

$$\begin{bmatrix} \omega_x^i \\ \omega_y^i \end{bmatrix} = R_{\psi_i} (K_{o_i} + \tilde{K}_{f_i}) M_{o_i} \dot{\alpha}_{o_i}$$

$$g: [ \alpha_{o_1} \cdots \alpha_{o_k} ]^T \in \mathbb{R}^{2k} \to \mathbb{R}$$

• Optimize  $F(\cdot)$ 

$$\dot{\alpha}_o = -\lambda \nabla g(\alpha_o) = -\lambda \nabla \xi G^T A G \xi, \lambda \in (0,1)$$

Chapter 5 Multifingered Hand Modeling and Control

Introduction

Grasp Statics

Kinematics o Contact

Hand Kinematic

Grasp Planning

Grasp Force Optimization

Coordinated Control

Chapter 5 Multifingered Hand Modeling and Control

Introduction

Grasp Statics

Kinematics of Contact

Hand Kinematio

Grasp Planning

Grasp Force Optimization

Coordinated Control

#### □ Control System Architecture:

**Problem 7: Formulation of control objectives** 

**Desired** object velocity  $V_{po}^d$ 

- 2 Desired object force  $f_o^d$
- **3** Suitable grasp quality  $\alpha_o^d$



▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

## 5.7 Coordinated Control

- Chapter 5 Multifingered Hand Modeling and Control
- Introduction
- Grasp Statics
- Kinematics of Contact
- Hand Kinematic
- Grasp Planning
- Grasp Force Optimizatior
- Coordinated Control



CoSAM2 – A unified Control System Architecture for Multifingered Manipulation

3

78

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

## 5.7 Coordinated Control

79

Chapter 5 Multifingered Hand Modeling and Control

Introduction

Grasp Statics

Kinematics of Contact

Hand Kinematic

Grasp Planning

Grasp Force Optimization

Coordinated Control

#### **Coordinated Motion Generation:**

Input Desired object velocity  $V_{po}^d \in \mathbb{R}^6$ Sensors Tactile sensors Output Fingertip velocity  $V_{pf_i} \in \mathbb{R}^6$ Constraints

-Rolling/finger gaiting (non-slippage)-Force closure

80

## □ Grasping force generation:

Input Desired object force  $f_o^d \in \mathbb{R}^6$ Sensors Tactile and contact force sensors Output Fingertip force  $x \in \mathbb{R}^m$ Constraints  $-Gx = F^d$  $-x \in FC$ 



▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Chapter 5 Multifingered Hand Modeling and Control

Introduction

Grasp Statics

Kinematics o Contact

Hand Kinematic

Grasp Planning

Grasp Force Optimizatior

Coordinated Control

81

## Compliance Motion Control Module:

- Chapter 5 Multifingered Hand Modeling and Control
- Introduction
- Grasp Statics
- Kinematics o Contact
- Hand Kinematic:
- Grasp Planning
- Grasp Force Optimizatior
- Coordinated Control

- Input Fingertip velocity  $V_{pf_i}^d \in \mathbb{R}^6$ from the CMG module and desired fingertip force  $F_i^d$  from the GFG module
  - Sensors Contact force sensors
- Output total finger velocity  $V_{pf_i} \in \mathbb{R}^6$

$$V_{pf_i} = V_{pf_i}^d + K_{c_i} (F_i^d - F_i^m)$$



 $K_{c_i} \in \mathbb{R}^{6 \times 6}: \text{Finger compliance matrix}; F_i^m: \text{Measured force.}$   $V_{pf_i}^d = \underbrace{\text{Ad}_{g_{f_io}}(\eta_i) V_{po}^d}_{\text{Object motion}} + \underbrace{\text{Ad}_{g_{f_il_{f_i}}}(\eta_i) V_{l_{oi}l_{f_i}}(\eta_i, \dot{\eta}_i^d)}_{\text{Grasp quality}} + \underbrace{K_{ci}(F_i^d - F_i^m)}_{\text{Object force}}$ 

# 5.7 Coordinated Control

Chapter 5 Multifingered Hand Modeling and Control

Introduction

Grasp Statics

Kinematics of Contact

Hand Kinematic

Grasp Planning

Grasp Force Optimization

Coordinated Control

#### □ Inverse Kinematics Module:

- Input Desired Fingertip velocity  $V_{pf_i}^d \in \mathbb{R}^6$
- Sensors Finger joint encoders
- Output Finger joint velocity  $\dot{\theta} \in \mathbb{R}^{n_i}$
- Constraints

$$V_{pf_i} = J_{f_i}(\theta_i)\dot{\theta}_i, n_i \leq 6$$

-Collision constraints

$$\min_{\dot{\theta}_i \in \mathbb{R}^{n_i}} \left\langle J_{f_i} \dot{\theta}_i - V_{pf_i}, Q(J_{f_i} \dot{\theta}_i - V_{pf_i}) \right\rangle$$

subject to  $\langle \dot{\theta}_i, M \dot{\theta}_i \rangle \le \alpha^2$  $\psi(\theta_i) + D\psi(\theta_i)\dot{\theta}_i \le 0$ 



82

## 5.7 Coordinated Control

83

#### □ *Implementation*:

Chapter 5 Multifingered Hand Modeling and Control

Introduction

Grasp Statics

Kinematics of Contact

Hand Kinematio

Grasp Planning

Grasp Force Optimization

Coordinated Control



#### The three-fingered HKUST hand

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 - のへぐ

## 5.7 Coordinated Control

84

- Chapter 5 Multifingered Hand Modeling and Control
- Introduction
- Grasp Statics
- Kinematics of Contact
- Hand Kinematio
- Grasp Planning
- Grasp Force Optimization
- Coordinated Control



#### Microprocessor control system for HKUST hand

## 5.7 Coordinated Control

85

Chapter 5 Multifingered Hand Modeling and Control

Introduction

Grasp Statics

Kinematics o Contact

Hand Kinematio

Grasp Planning

Grasp Force Optimization

Coordinated Control



Tactile sensor and signal conditioning unit for HKUST hand

## **5.7 Coordinated Control**

Chapter 5 Multifingered Hand Modeling and Control

Introduction

Grasp Statics

Kinematics of Contact

Hand Kinematio

Grasp Planning

Grasp Force Optimization

Coordinated Control



#### HKUST hand hardware architecture

86

87

# 5.7 Coordinated Control

|                        | HKUSI-Hand system Sensors                     |   |
|------------------------|-----------------------------------------------|---|
|                        |                                               |   |
|                        |                                               |   |
|                        |                                               |   |
| Coordinated<br>Control |                                               |   |
|                        | Manipulation: single Experiment 2             |   |
|                        | finger and two fingers 3-Figured Manipulation | C |