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Pfaffian Constraints
Some systems are characterized by having constraints on their
velocities. Thus, for example if the state q ∈ℜn then a set of
constraints of the form

ω
i (q)q̇ = 0 i = 1, . . . ,k

with ω i T (q) ∈ℜn is referred to as a system of Pfaffian constraints.
We will assume that the rows ω i (q) are linearly independent at q
so that the k constraints are independent.

The first question that we ask is whether the constraints may
be converted into constraints of the form

hi (q) = 0 i = 1, . . . ,k

which would say that the state space q is constrained to lie in
a manifold of dimension n−k.
We may be encouraged by the fact that
h(q) = 0⇔ dh(q)q̇ = 0 for a single constraint.
The answer to this question is neither easy nor obvious!



Single Pfaffian Constraints

A single constraint

ω(q)q̇ =
n

∑
i=1

ωj(q)q̇j = 0

is said to be integrable if there exists a function h : ℜn→ℜ such
that

ω(q)q̇ = 0⇔ h(q) = 0

That is
n

∑
j=1

ωj(q)q̇j ⇒
n

∑
j=1

∂h
∂qj

q̇j = 0

This implies that there exists some function α(q) called the
integrating factor such that

α(q)ωj(q) = ∂h
∂qj

(q), j = 1, . . . ,n



Integrability

From the equality of the mixed partials of h, that is

∂ 2h
∂qi∂qj

= ∂ 2h
∂qj∂qi

it follows that

∂ (αωj)
∂qi

= ∂ (αωi )
∂qj

i , j = 1, . . . ,n

The problem about this condition is that it relies on finding the
integrating factor α(q). This becomes even harder when there are
k constraints because you need to not only check the integrability
of each constraint but also that of linear combinations of the
constraints

k

∑
i=1

αi (q)ω
i (q)q̇



Holonomic, Nonholonomic

The set of Pfaffian constraints ω i (q), i = 1, . . . ,k is said to be
holonomic if there exists functions hi (q), i = 1, . . . ,k such that

ω
i (q)q̇ = 0⇔ hi (q) = ci , i = 1, . . .k

That is the number of constraints on q are precisely k and thus q
lies on a maniforld of dimension (n−k). On the other hand if
there are only p < k functions such that

ω
i (q)q̇ = 0⇔ hi (q) = ci , i = 1, . . .p.

the Pfaffian system is said to be nonholonomic. If p = 0 the
Pfaffian system is said to completely nonholonomic. For
nonholonomic systems there are fewer than k contraints on the
state space q. For completeley nonholonomic systems there are
NO constraints on q. If 0< p < k the constraints are called
partially nonholoomic.



Equivalent Control Systems

If Pfaffian constraints give you the directions that the body
coordinates q cannot move, how about the directions that they can
move? To this end, we construct the right null space of the
constraints, denoted gj(q), j = 1, . . . ,n−k =: m. That is

ω
i (q)gj(q) = 0 i = 1, . . . ,k

j = 1, . . . ,n−k

Then the allowable trajectories satisfying the Pfaffian constraints
are the traectories of the control syste

q̇ = g1(q)u1 + · · ·+ gm(q)um

for suitably chosen inputs u1(·), . . .um(·), i = 1, . . . ,m. This is a
drift free control system.
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Example 1: Raibert’s hopper

The one legged hopper was originally designed by Marc Raibert to
mimic a kangaroo. It has a prismatic joint in the leg and a revolute
joint at the hip. The hopping is emulated by the prismatic joint
and the swinging of the leg by the hip joint. The lhopper has a
stance phase on the ground and a flying phase in the air.



Angular Momentum Constraints to Control

When it is in the air angular momentum is conserved. I is the
moment of inertia of the body, the leg mass m is concentrated at
the foot. The formula for the angular momentum set to zero is

I θ̇ + m(l + d)2(θ̇ + ψ̇) = (I + m(l + d)2)θ̇ + m(l + d)2
ψ̇ = 0

If q = (ψ, l ,θ)T then an equivalent control system for describing it
is found by finding a bass for the null space of

ω
1(q) =

[
m(l + d)2 0 I + m(l + d)2 ]

An especially convenient one is

q̇ =

 1
0

− m(l+d)2

I+m(l+d)2

u1 +

 0
1
0

u2



Planar Space Robot

This is a simplified model of a robot in space with two arms
connected to the body through revolute joints.

The mass and moment of inertia of the central body are M, I and
the mass of each arm is m concentrated at the ends of the arms of
length l .



Angular Momentum Constraints to Control

In MLS, page 335 there is a detailed derivation of the Lagrangian
equations for the Space Robot. The Lagrangian does not depend
on the body angle θ . Hence (this is the statement of angular
momentum conservation)

d
dt

∂L
∂ θ̇

= ∂L
∂θ

= 0 = a13(ψ)ψ̇1 + a23(ψ)ψ̇2 + a33(ψ)θ̇

Setting q = (ψ1,ψ2,θ)T we get the equivalent control system

q̇ =

 1
0
−a13

a33

u1 +

 0
1
−a23

a33

u2



Rolling without slipping

A second source of nonholonomy is from constraints that arise
from discs, wheels which roll without slipping. Coinsider a penny
rolliug on a surface:

Here x ,y are the location of the contact point on the plane θ is
the angle that the disk makes with the horizontal, φ is the angle
made by a fixed line on the disk relative to the vertical axis. ρ is
the radius of the disk.



Rolling Constraint to Control
If the disk rols without slipping we have with q = (x ,y ,θ ,φ)T ∈ℜ4

ẋ −ρ cosθφ̇ = 0
ẏ −ρ sinθφ̇ = 0

This may be written as[
1 0 0 −ρ cosθ

0 1 0 −ρ sinθ

]
q̇ = 0

Thus, there are 2 Pfaffian constraints on ℜ4. A convenient choice
of control system, with θ̇ = u1 and φ̇ = u2 is

q̇ =


ρ cosθ

ρ sinθ

0
1

u1 +


0
0
1
0

u2

This is a two input control system.



Front Wheel Drive Car

Here is a picture of a front wheel drive car. The steering angle is
φ , the angle of the car body is θ and the position of the midpoint
of the rear axel is x ,y .

Thisi is sometimes referred to as the kinematic model of a car. It is
used frequently in the analysis of self driving cars and their motion
plans.



Rolling without Slipping to Car Model

The rolling without slipping constraints for the front wheels and
back wheels are a statement that the velocity perpendicular to the
direction that the velocity of the wheels perpendicular to the
direction they are pointing is 0:

sin(θ + φ)ẋ − cos(θ + φ)ẏ − l cosφθ̇ = 0
sinθ ẋ − cosθ ẏ = 0

Using the steering velocity as u2 = φ̇ and q = (x ,y ,θ ,φ)T ∈ℜ4

gives the control system

q̇ =


cosθ

sinθ
1
l tanφ

0

u1 +


0
0
0
1

u2

u1 has the interpretation of the driving input and u2 as the steering
input.



Car with N Trailers

The figure shows a car with N trailers attached. The hitch of each
trailer is attached to the center of the rear axle of the previous
trailer. The wheels of the individual trailers are aligned with the
body of the trailer.

Satisfy yourself that q = (x ,y ,φ ,θ0, . . . ,θN)T ∈ℜN+4. There are
N +2 sets of wheels which roll without slipping to give N +2
Pfaffian constraints. (see Exercise 6 in Chapter 7 of MLS).



A Firetruck
The figure shows a kinematic model of a fire truck. You may have
noticed that there is a driver in the front and one more at the back
of the ladder. It is not unlike a car with one trailer, except that the
rear axle is also steerable.

How many Pfaffian constraints are there? What is the dimension
of q. (See Exercise 7 in Chapter 7 of MLS).
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The Lie Bracket Motion
Consider the control system with q ∈ℜn

q̇ = g1(q)u1 + g2(q)u2

You see immediately that you can move in the directions g1,g2 at
a point q. But there may be more directions. Consider what is
called the Lie bracket motion: follow g1 for ε seconds, followed by
g2 for ε seconds, then −g1 for ε seconds and −g2 for ε seconds as
seen in the figure



The Lie Bracket

You might think that after 4ε seconds, you are back to where you
started from, but it is amazing that a careful Taylor series
expansion will give you

q(4ε) = q(0) + ε
2(∂g2

∂q g1(q0)− ∂g1
∂q g2(q0)) + O(ε

3)

The leading term is a term of O(ε2), however and its coefficent
measures the extent to which g1,g2 do not commute! This is the
Lie Bracket

[f ,g ](q) = ∂g
∂q f (q)− ∂ f

∂q g(q)

A Lie product is a nested set of Lie brackets, for example

[[f ,g ], [f , [f ,g ]]]



Properties of Lie Brackets

Given vector fields f ,g ,h on ℜn and smooth functions
α,β : ℜn→ℜ , we havce

Skew Symmetry
[f ,g ] =−[g , f ]

Jacobi Identity

[f , [g ,h]] + [h, [f ,g ]] + [g , [h, f ]] = 0

Chain Rule

[αf ,βg ] = αβ [f ,g ] + α(Lf β )g −β (Lg α)f



Distributions, Involutivity

A distribution ∆⊂ℜn assigns a subspace of vector fields at each
q ∈ℜn. Thus

∆(q) = span (g1(q), . . . ,gm(q))

The distribution is said to be regular if the dimension of the
subspace ∆(q) does not vary with q. ∆ is said to be involutive if
it is closed under the Lie Bracket that is

∆ involutive ⇔ ∀f ,g ∈∆, [f ,g ] ∈∆



Frobenius Theorem

A regular distribution ∆ of dimension p is said to be integrable if
there exist functions h1, . . . ,hn−p : ℜn→ℜ such that

∀f ∈∆ Lf hi = ∂hi
∂q f (q) = Lf hi (q)≡ 0 i = 1, . . . ,(n−p)

Then, the manifolds Mc parameterized by c ∈ℜn−k

Mc = {h1(q) = c1, . . . ,hn−k(q) = cn−k}

are called the integral manifolds of ∆ of dimension n−k.

Frobenius Theorem

A regular distribution ∆ is integrable if and only if ∆ is involutive.



Frobenius Theorem and Integrability of Pfaffians

Given a set of Pfaffian constraints ωi (q)q̇ = 0, i = 1, . . . ,k, convert
it into the equivalent control system

q̇ = g1(q)u1 + · · ·gn−k(q)un−k

Then the distribution ∆ := span{g1, . . . ,gn−k} may not be
involutive. Take all possible Lie brackets and Lie products of the
vector fields in ∆ to get its involutive closure. This is denoted ∆̄.
By definition it is involutive. Let it be regular and have dimention
be p > (n−k).
By Frobenius’ Theorem ∆̄ is integrable. Let the functions
h1, . . . ,hn−p define the integral manifolds of ∆̄. Note that
n−p 6 k. If p = n there are no integral manifolds, that is the
Pfaffian system is completely nonholonomic. If p < n the
original Pfaffian system is partially non-holonomic. If p = k, the
system is holonomic.



Controllability
The reachable states of a nonlinear control system

q̇ = g1(q)u1 + · · ·+ gm(q)um

from an initial state q0 ∈ V are defined by first defining RV (q0, t)
to be the set of all states that you can steer the system to at t
seconds starting from q0 and staying inside V . Then,

RV (q0 6 T ) =
⋃

06t6T
RV (q0, t)

is called the reach set.



Chow’s Theorem

Chow’s theorem gives the relationship between the reach set and
the involutive closure of ∆ = span{q1, . . . ,gm}, referred to as ∆̄.

Chow’s Theorem

If ∆̄(q) = ℜn for all q in a neighborhood of q0, then RV (q0,6 T )
has non empty interior.

This says in an understated way that you can steer to a set which
has bulk/interior (that is, is of full dimension) and the condition
i∆̄(q) = ℜn is referred to as the controllability rank condition.
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Filtration

Given a distribution ∆ = span{g1, . . . ,gm} define the sequence of
distributions

∆1 = ∆ ∆i = ∆i−1 + [∆1,∆i−1]

The chain of distributions is called the filtration and roughly
speaking ∆i has the i-th order Lie brackets. ∆i ⊂∆i+1. When the
rank ∆i is the same as the rank of ∆i+1, that first value of i at
which this happens is called the degree of nonholonomy. The
dimensions ri of the ∆i are called the growth vector.



One legged hopper

Recall that wirh q = (ψ, l ,θ)T an equivalent control system for
describing the hopper is

q̇ = g1(q)u1 + g2(q)u2

with

g1 =

 1
0

− m(l+d)2

I+m(l+d)2

 g2 =

 0
1
0

 g3 = [g1,g2] =

 0
0

2Im(l+d)
I+m(l+d)2


Thus ∆̄ is of dimension 3, the hopper system is completely
nonholonomic with degree of holonomy 2 and growth vector (2,3).



Rolling Penny

With q = (x ,y ,θ ,φ)T ∈ℜ4 and θ̇ = u1 and φ̇ = u2 we have

g1 =


ρ cosθ

ρ sinθ

0
1

 g2 =


0
0
1
0


The Lie products are

g3 = [g1,g2] =


ρ sinθ

−ρ cosθ

0
0

 g4 = [g2,g3] =


ρ cosθ

ρ sinθ

0
0
0


Since span of g1,g2,g3,g4 is ℜ4 the rolling penny system is
completely non-holonomic with degree of nonholonomy 3 and
growth vector (2,3,4).



Front wheel drive car

Recall that with u1 is the driving input and u2 the steering input

q̇ =


cosθ

sinθ
1
l tanφ

0

u1 +


0
0
0
1

u2

.

g3 = [g1,g2] =


0
0

− 1
l cos2 φ

0

 g4 = [g1,g3] =


− sinθ

l cos2 φ
cosθ

cos2 φ

0
0


Except at φ =±π the front wheel drive car is comletely
non-holonomic with degree of nonholonomy 3 and growth vector
(2,3,4). The vector fields are named: g1 is drive, g2 is steer, g3 is
wiggle, and g4 is slide.



Thank you for your attention. Questions?

Shankar Sastry
sastry@coe.berkeley.edu
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