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• Simultaneous Localization and Mapping:          (SLAM) 
• Localization — Estimate robot state (pose, velocity, etc.). 

• Mapping — Construct a map (landmarks, features, etc.) of its surroundings.
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Video Credit: “SLAM++: Simultaneous Localisation and Mapping at the Level of Objects,“ (https://www.youtube.com/watch?v=tmrAh1CqCRo)

Cadena et al, “Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age,” IEEE Transactions on Robotics, 2016.

Intro: What is SLAM?

https://www.youtube.com/watch?v=tmrAh1CqCRo


Intro: Why SLAM, and When?
• Why SLAM is useful: 
• SLAM research has produced the visual-inertial odometry algorithms used today 

(E.g., MSCKF)

• SLAM allows use of metric information in establishing loop closures, thus helping 

the robot to construct a robust representation of the environment.

• SLAM is necessary for many applications that require a globally consistent map 

(e.g., to construct a map and report back to a human operator).

• When SLAM is unnecessary: 
• When sufficient localization can be done without SLAM (e.g., Navigation scenario 

with access to GPS + LiDAR)

• When a metric map is unnecessary for the task (e.g., Simple navigation tasks)

5
Cadena et al, “Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age,” IEEE Transactions on Robotics, 2016.



Intro: Is SLAM Solved?
• It depends: 

• On the robot (sensors), environment, performance requirement in question.


• SLAM is solved for: 

• Vision-based SLAM on slow robotic systems.

• Mapping a 2D indoor environment with a robot equipped with wheel encoders 

and a laser scanner

• SLAM is not solved for: 
• Localization with highly agile robots, mapping rapidly evolving environments

• Open problems— Robust performance, semantic understanding, resource 

awareness, task-driven perception.

6
Cadena et al, “Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age,” IEEE Transactions on Robotics, 2016.



Intro: SLAM Problem Setup
• (1) Build a map with reference to the current location.

• (2) Move and estimate the updated location.

• (3) Observe mapped landmarks, and initialize new landmarks.

• (4) Use observations to update the position estimate and landmarks’ positions. 

7
Cadena et al, “Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age,” IEEE Transactions on Robotics, 2016.



Intro: Terminology
• Robot Pose: 
• Position and orientation of the robot camera.

• Described by a translational (e.g., vector) component and a rotational (e.g., 

SO(3) or quaternion) component.

• Feature: 
• Positions (2D or 3D) of notable attributes in images (e.g., corners)

• Used to identify correspondences between different images of the same part of 

the environment (e.g. an image patch of a repeatedly observed of a landmark).

8
Cadena et al, “Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age,” IEEE Transactions on Robotics, 2016.



• Image Measurement: 
• 2D measurements of the surroundings, periodically captured by robot sensors 

(e.g., cameras)

• Provides metric information for robot poses and features


• State Vector: 
• Physical quantities describing the robot, iteratively refined in the SLAM problem

• May include the IMU state, poses, and / or feature position estimates

• Speed vs. accuracy tradeoff — Including more quantities in the robot state 

improves accuracy but lowers computational speed

9
Cadena et al, “Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age,” IEEE Transactions on Robotics, 2016.

Intro: Terminology



Intro: SLAM Front End and Back End
• Front End: 
• Extracts and processes features, converts signals from sensors into abstracted 

data (e.g., position, orientation, velocity, etc.).

• Back End: 
• Does inference over abstracted data (e.g., MAP Estimation of robot states).

10
Cadena et al, “Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age,” IEEE Transactions on Robotics, 2016.



Outline
• Introduction, FAQs 
• Front End 
• Feature Extraction

• Data Association, with Outlier Rejection


• Back End 
• Goal, Setup

• Unifying Framework: 3 Steps

• Aside: Kalman Filtering, Basics

• Example: EKF SLAM

• State-of-the-art Algorithms

• Experiments

• Loop Closures


• Next Steps 
• Active Perception: Dynamic, Semantic SLAM

11



Front End: Feature Extraction
• Goal: Extract repeatably detected 

features from raw images.

• Key: Find distinctive “image patches” 

detectable from multiple views.

• Corner points work well.

• Corner detectors: FAST, Harris, DoG

12
Rosten, Edward, and Tom Drummond. "Machine learning for high-speed corner 
detection." European conference on computer vision. Springer, Berlin, 
Heidelberg, 2006.



Front End: Data Association
• To reliably detect the same point in multiple views of a scene:

• Describe the image patch around a feature point in a way that is comparable, 

informative, and invariant to camera orientation.

• Given a camera pose estimate, triangulate feature location from multiple views.

• Data association methods: SURF, SIFT, FAST, BRIEF, ORB 
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Front End: Data Association
• FAST:      (Features from Accelerated Segment Test) 
• Compares each pixel with its neighboring pixels

• If the pixels is “sufficiently” different from “most” of its pixels, it is labeled as a 

potential corner
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Rosten, Drummond. "Machine learning for high-speed corner detection." European conference on computer vision. Springer, Berlin, Heidelberg, 2006.

FAST Feature Detection, OpenCV code: https://docs.opencv.org/3.4/df/d0c/tutorial_py_fast.html

https://docs.opencv.org/3.4/df/d0c/tutorial_py_fast.html


Front End: Data Association
• BRIEF:      (Binary Robust Independent Elementary Features) 
• Uses binary strings as feature descriptors

• Randomly samples pairs of pixels, and compares pixel intensity within each pair


•
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Calondar et al. “BRIEF: Binary Robust Independent Elementary Features,” ECCV 2010.

BRIEF feature descriptor, OpenCV code: https://docs.opencv.org/3.4/dc/d7d/tutorial_py_brief.html

https://docs.opencv.org/3.4/dc/d7d/tutorial_py_brief.html


Front End: Data Association
• ORB:      (Oriented FAST and Rotated BRISK) 
• Drawback of FAST — Not scale invariant, cannot record “orientation” of corner

• Drawback of BRISK — Performs poorly with rotations

• ORB — FAST + BRISK, with above issues addressed


•
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Rublee et al., “ORB: An efficient alternative to SIFT or SURF,” ICCV 2011.

ORB, OpenCV code: https://docs.opencv.org/3.4/d1/d89/tutorial_py_orb.html

Green lines: 
Correct matches


Red dots: 
Incorrect matches

https://docs.opencv.org/3.4/d1/d89/tutorial_py_orb.html


Front End: Outlier Rejection
• Nearest-neighbor feature matching: “local”, can be error-prone.

• Outlier feature matches should be rejected.

• Method 1: RANSAC: (Random Sampling and Consensus)

• Estimate fundamental matrix, reject matches that violate epipolar constraints.

• Estimate Perspective-N-Point solution, reject matches with high reprojection 

error.

•
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Python implementation: https://en.wikipedia.org/wiki/Random_sample_consensus#Example_code

https://en.wikipedia.org/wiki/Random_sample_consensus#Example_code


Front End: Outlier Rejection
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Image at time t − 1 Image at time t

Top: Raw matches

Bottom: After outlier 
rejection using RANSAC



Front End: Outlier Rejection
• Nearest-neighbor feature matching: “local”, can be error-prone.

• Outlier feature matches should be rejected.

• Method 2: Mahalanobis distance test: (Chi-squared rejection) 

• Accept a feature match only if the location of the new image feature is within 3 

standard deviations of the expected location given the current best estimate.
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Back End: Setup
•Dynamics model: 
• General form: 


• Associated residual: 

21

, with .xt+1 = g(xt) + wt wt ∼ N(0,Σw), ∀t ≥ 0

xt+1 − g(xt)

Pose at

time  t

Additive noise to

dynamics at time  t

Pose at

time  t + 1

•Example: 
• Discrete time robot model with associated input  and IMU measurements.

• (See Appendix for a simple, 2D example)

ut



Back End: Setup
•Measurement model: 
• Image measurement of feature j at time t:  


• General form: 


• Associated residual: 
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, with .zt,j = h(xt, ft,j) + vt,j vt,j ∼ N(0,Σv), ∀t ≥ 0

zt,j − h(xt, ft,j)

Pose at

time  t

Image measurement

of feature  at time  j t

Position estimate 
of feature  at 
time  

j
t

Additive noise to 
measurement of 
feature  at time  j t

zt,j ∈ ℝdz, ∀t, j ≥ 0.



Measurement Model
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• Example — Pinhole camera:



Back End: Setup
• State Vector: 
• Camera pose, at time t:                              

• Position of feature j at time t in global frame:       

• Full state, at time t:                                         


•        

• State Vector Example—Extended Kalman Filter (EKF): 
• In EKF SLAM, the state vector consists of the most current pose and all features 

ever detected (e.g., p features):

24

(The full state consists of the concatenation of multiple poses and features)

x̃t = (xt, ft,1, ⋯, ft,p) ∈ ℝdx+pdf := ℝd

(Variables to estimate)
xt ∈ ℝdx, ∀t ≥ 0.
ft,j ∈ ℝdf, ∀t ≥ 0,j ≥ 1.

, with prior           x̃t ∈ ℝd, ∀t ≥ 0 N(μt, Σt)



Back End: Unifying Framework
• State-of-the-art SLAM Back End Algorithms: 
• Involve diffff
• Diffff

25
Saxena, Chiu, et al, “Simultaneous Localization and Mapping: Through the Lens of Nonlinear Optimization,” ICRA / R-AL, 2022. 

Cost Construction

Gauss-Newton Steps

Marginalization

• 3 Main Modules in Back End:



•Cost Construction: 
• Q: What variables and measurement data should we take into consideration?

26

Back End: Unifying Framework

• Idea —If models and measurements are consistent, then all residuals are small.

• Define — cost  = sum of weighted 2-norm squared of residuals.


• Goal—Find  that minimizes .         (  Nonlinear least squares problem)
c(x̃t)

x̃t c(x̃t) ←

Residual: xt+1 − g(xt)

Residual: zt,j − h(xt, fj)

, with xt+1 = g(xt) + wt wt ∼ N(0,Σw), ∀t ≥ 0.

, with zt,j = h(xt, fj) + vt,j vt,j ∼ N(0,Σv), ∀t ≥ 0.

where poses, features, measurements.xt := fj := zt,j :=

• Residuals — Error terms derived from dynamics and measurement models:

Saxena, Chiu, et al, “Simultaneous Localization and Mapping: Through the Lens of Nonlinear Optimization,” ICRA / R-AL, 2022. 



• Gauss-Newton Update: 
• Q: How do we compute a minimizer of the cost quickly and accurately?

27

Back End: Unifying Framework

Photo credits: https://fgs-2019.sciencesconf.org/data/diehl.pdf

Linearization point

x̃t

c(x̃t)

• Linearization Point — Current estimate of , denoted 

• Approximate  about  as a convex quadratic, and find the minimum. 

• Levenberg-Marquardt Update — -Regularized Gauss-Newton Update

x̃t μt
c(x̃t) μt

L2

Saxena, Chiu, et al, “Simultaneous Localization and Mapping: Through the Lens of Nonlinear Optimization,” ICRA / R-AL, 2022. 

https://fgs-2019.sciencesconf.org/data/diehl.pdf


Back End: Unifying Framework
•Marginalization: 
• Q: What variables should we disregard to increase computation speed, and when?

28

• Split full state into parts to keep, and parts to marginalize — .
x̃t = (x̃t,K, x̃t,M)

(1) Depends only on , 

(2) Computed via Gauss-Newton steps

x̃t,K

• Goal — Replace  with a cost function that depends only on :c(x̃t) x̃t,K

Saxena, Chiu, et al, “Simultaneous Localization and Mapping: Through the Lens of Nonlinear Optimization,” ICRA / R-AL, 2022. 



Back End: Unifying Framework
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• Summary — Steps as Design Choices: 
• Cost Construction — What variables and measurement data should we take 

into consideration?

• Gauss-Newton Update — How do we compute a minimizer of the cost quickly 

and accurately?

• Marginalization — What variables should we disregard to increase computation 

speed, and when?

• This is reminiscent of how humans process information. 
• The above steps provide a sound framework for representing scenes accurately 

and efficiently.

Saxena, Chiu, et al, “Simultaneous Localization and Mapping: Through the Lens of Nonlinear Optimization,” ICRA / R-AL, 2022. 



• So far — Taylor expansion on an objective function , with .f : ℝn → ℝk δ ∈ ℝn

30

• Problem — In SLAM, “ ” contains poses , where : rotation matrix
: translation vector. How would one define “ ”?


• Solution — We require a notion of "differential change" other than simple addition.

x (R, T) ∈ SE(n) R
T R + δ

Optimization on Manifolds

f(x + δ) ≈ f(x) +
df
dx

(x) ⋅ δ



• Setup — , where : smooth manifold of dimension 

• Idea — Use the tangent space  at a given point , to locally 

parameterize small changes from that point.

• Define a new "plus" operator:

• Define a new "minus" operator:

f : M → ℝk M n
TxM x ∈ M

Optimization on Manifolds
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• Example — SO(3) and SE(3) in 3D SLAM 


• Use the exponential and logarithmic maps to define  and 
 by:


• Covariances — Redefined to characterize the tangent-space deviation from 
the mean.

⊞ : M × ℝn → M
⊟ : M × M → ℝn

Optimization on Manifolds

32



• Taylor expansion, on Manifolds:

Optimization on Manifolds

33

where , , and :f : M → ℝk δ ∈ ℝn J : ℝn → ℝk



Optimization on Manifolds
•New (correct) update rules on manifolds: 
• Gauss-Newton descent:


• Marginalization:


• And the new prior is introduced into the optimization problem as

34



Back End: EKF SLAM (Upcoming Slides)
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•Main Focus — The simplest example of SLAM: 
• Extended Kalman Filter — Recursive, filtering-based algorithm for updating a full 

state vector, using dynamics and measurement models.

•Brief Outline: 
• Introduce the Kalman Filter (KF) for linear systems

• Introduce the Extended Kalman Filter (EKF) in its standard formulation

• Present algorithm modules for the key steps of the EKF algorithm— Feature 

augmentation, feature update, and state propagation

• Define cost functions, and apply the optimization framework on previous slides.

• Conclusion — Descent steps on the cost functions give the same update and 

propagation equations, for the full state, as the EKF algorithm modules

Saxena, Chiu, et al, “Simultaneous Localization and Mapping: Through the Lens of Nonlinear Optimization,” ICRA / R-AL, 2022. 
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•Kalman Filter (KF) for a Linear System: 
• Linear System with additive Gaussian noise: 

• where , , .


• Conditional mean and covariance of state : 

• where . 

xt, wt ∈ ℝn ut ∈ ℝni yt ∈ ℝno

xt

y1:t = (y1, ⋯, yt)

Aside: Kalman Filtering
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•Kalman Filter (KF) for a Linear System: 
• 2 Main Steps 
• (A) Propagation:      ( ) 

• Given: (1) An estimate of the current state ( ) conditioned on all observations 
up to the present ( ), 


• Given: (2) The dynamics model 


• Find: An estimate of the next state  conditioned on the current 
observation set 


•

xt |y1:t → xt+1 |y1:t
xt

y1:t
xt+1 = Atxt + wt

xt+1
y1:t

Aside: Kalman Filtering
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•Kalman Filter (KF) for a Linear System: 
• 2 Main Steps 
• (B) Update:               ( ) 

• Given: (1) An estimate of the new state ( ) conditioned on all observations 
up to the recent past ( ), 


• Given: (2) A new observation 


• Given: (3) The observation model 


• Find: An estimate of the new state  conditioned on the new observation 
set .

xt+1 |y1:t → xt+1 |y1:t+1
xt+1

y1:t
yt+1

yt+1 = Ct+1xt+1 + wt+1
xt+1

(y1:t, yt+1) = y1:t+1

Aside: Kalman Filtering



40

•Kalman Filter (KF) for a Linear System: 
• Propagation Step:      ( ) 
•

xt |y1:t → xt+1 |y1:t

Aside: Kalman Filtering

Thrun, Burgard, Fox. “Probabilistic Robotics,” MIT Press, 2005.
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•Kalman Filter (KF) for a Linear System: 
• Update Step:      ( ) 
• Idea:

• (1)  is “old data” on which estimates of ,  are based


• (2) So, characterize  and 


• (3) Then, condition  on  to characterize:

xt+1 |y1:t → xt+1 |y1:t+1

y1:t xt+1 yt+1

xt+1 |y1:t yt+1 |y1:t

xt+1 |y1:t yt+1 |y1:t

(xt+1 |y1:t) | (yt+1 |y1:t) ⟷ xt+1 |y1:t+1

Aside: Kalman Filtering

Thrun, Burgard, Fox. “Probabilistic Robotics,” MIT Press, 2005.
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•Kalman Filter (KF) for a Linear System: 
• Update Step:      ( ) 
• Idea — (2) Characterize  and 

xt+1 |y1:t → xt+1 |y1:t+1
xt+1 |y1:t yt+1 |y1:t

Aside: Kalman Filtering

Thrun, Burgard, Fox. “Probabilistic Robotics,” MIT Press, 2005.
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•Kalman Filter (KF) for a Linear System: 
• Update Step:      ( ) 
• Idea — (3) Condition  on  to characterize 

• Lemma — Given Gaussian random variables  with joint distribution: 

• The conditional distribution  is likewise Gaussian, with: 


• We wish to apply this lemma, with  and .

xt+1 |y1:t → xt+1 |y1:t+1
xt+1 |y1:t yt+1 |y1:t xt+1 |y1:t+1

X, Y

X |Y

X = xt+1 |y1:t Y = yt+1 |y1:t

Aside: Kalman Filtering

Thrun, Burgard, Fox. “Probabilistic Robotics,” MIT Press, 2005.
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•Kalman Filter (KF) for a Linear System: 
• Update Step:      ( ) 

• Idea — (3) Condition  on  to characterize 

• Applying the lemma gives us:

xt+1 |y1:t → xt+1 |y1:t+1

xt+1 |y1:t yt+1 |y1:t xt+1 |y1:t+1

Aside: Kalman Filtering

Thrun, Burgard, Fox. “Probabilistic Robotics,” MIT Press, 2005.
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•Kalman Filter (KF) for a Linear System: 
• Summary: 
• Propagation Step: 

• Update Step:

Aside: Kalman Filtering

Thrun, Burgard, Fox. “Probabilistic Robotics,” MIT Press, 2005.
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• Extended Kalman Filter (EKF) for a Nonlinear System: 
• Instead of the linear system we considered before:


• Let us consider the following nonlinear system:


• where  and  are nonlinear maps.g : ℝn → ℝn h : ℝn → ℝno

Aside: Kalman Filtering

Thrun, Burgard, Fox. “Probabilistic Robotics,” MIT Press, 2005.
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• Extended Kalman Filter (EKF) for a Nonlinear System: 
• We wish to apply Kalman filtering-type techniques to the nonlinear system 

• Apply Jacobian linearization to approximate the nonlinear system as:


• where , as before.

• Then, apply the Kalman Filtering equations.

• Means — Use true nonlinear maps .

• Covariances — Use linearization .

μt′￼|t := 𝔼[xt′￼
|y1:t]

gt, ht
Gt, Ht

Aside: Kalman Filtering

Thrun, Burgard, Fox. “Probabilistic Robotics,” MIT Press, 2005.
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• Extended Kalman Filter (EKF) for a Nonlinear System: 
• Summary: 
• Propagation Step: 

• Update Step:

Aside: Kalman Filtering

Thrun, Burgard, Fox. “Probabilistic Robotics,” MIT Press, 2005.
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Back End: EKF SLAM

50

• EKF SLAM, Setup: 
• State Vector —In Extended Kalman Filter (EKF) SLAM: Most current pose, and 

all features ever detected (e.g.,  features):


• Steps for iteratively refining  — Feature augmentation, feature update, and 
state propagation.

x̃t
p

x̃t

x̃t = (xt, ft,1, ⋯, ft,p) ∈ ℝdx+pdf := ℝd

Saxena, Chiu, et al, “Simultaneous Localization and Mapping: Through the Lens of Nonlinear Optimization,” ICRA / R-AL, 2022. 



Back End: EKF SLAM
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• Step 1 — Feature Augmentation: 
• Augment  with position estimates of newly detected featuresx̃t

Saxena, Chiu, et al, “Simultaneous Localization and Mapping: Through the Lens of Nonlinear Optimization,” ICRA / R-AL, 2022. 



Back End: EKF SLAM
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• Step 2 — Feature Update: 
• Update  with position estimates of features already described in x̃t x̃t

Saxena, Chiu, et al, “Simultaneous Localization and Mapping: Through the Lens of Nonlinear Optimization,” ICRA / R-AL, 2022. 



Back End: EKF SLAM
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• Step 3 — State Propagation: 
• In , replace the current pose  with the new pose x̃t xt xt+1

Saxena, Chiu, et al, “Simultaneous Localization and Mapping: Through the Lens of Nonlinear Optimization,” ICRA / R-AL, 2022. 



Back End: EKF SLAM

54

•Repeat Steps 1 to 3: 
• Increment  by 1, and repeat.t

t ← t + 1

Saxena, Chiu, et al, “Simultaneous Localization and Mapping: Through the Lens of Nonlinear Optimization,” ICRA / R-AL, 2022. 



Back End: EKF SLAM
• EKF SLAM, Standard Formulation:

55

Feature Augmentation Step 
(Cost Construction)

Feature Update Step 
(Gauss-Newton)

State Propagation Step 
(Marginalization)

For loop running through  
the finite time horizon  

Saxena, Chiu, et al, “Simultaneous Localization and Mapping: Through the Lens of Nonlinear Optimization,” ICRA / R-AL, 2022. 
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Back End: State-of-the-art Algorithms

57

time

t

t − 1

1

t − 2

2

: Poses

: Features

Saxena, Chiu, et al, “Simultaneous Localization and Mapping: Through the Lens of Nonlinear Optimization,” ICRA / R-AL, 2022. 



Back End: State-of-the-art Algorithms
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time

t

t − 1

1

t − 2

2

: Poses

: Features

Saxena, Chiu, et al, “Simultaneous Localization and Mapping: Through the Lens of Nonlinear Optimization,” ICRA / R-AL, 2022. 



Back End: State-of-the-art Algorithms

59

: Poses

: Features

time

t

t − 1

1

t − 2

2

Saxena, Chiu, et al, “Simultaneous Localization and Mapping: Through the Lens of Nonlinear Optimization,” ICRA / R-AL, 2022. 



Back End: State-of-the-art Algorithms
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Small number of states, 

aggressive marginalization

Medium number of states, 

some marginalization

Large number of states, 

little or no marginalization

Saxena, Chiu, et al, “Simultaneous Localization and Mapping: Through the Lens of Nonlinear Optimization,” ICRA / R-AL, 2022. 
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• Goal — Use our optimization framework to compare state-of-the-art 
SLAM back-end algorithms


• Dataset — EuRoC MAV, Vicon Room 2

Saxena, Chiu, et al, “Simultaneous Localization and Mapping: Through the Lens of 
Nonlinear Optimization,” ICRA / R-AL, 2022. 

Leutenegger et al. “Keyframe-based Visual-Inertial Odometry using Nonlinear 
Optimization,” The International Journal of Robotics Research, 2015. 

Mourikis, Roumeliotis. “A Multi-State Constraint Kalman Filter for Vision-aided Inertial 
Navigation,” ICRA, 2007.

Back End: Experiments
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• Front End: 
• Standardized across all 

experiments

Back End: Experiments

•Back Ends: 
• Multi-State Constrained Kalman 

Filter (MSCKF),

• Sliding Window Filter (SWF),

• Open-Keyframe Visual Inertial 

SLAM (OKVIS), etc.

Saxena, Chiu, et al, “Simultaneous Localization and Mapping: Through the Lens of 
Nonlinear Optimization,” ICRA / R-AL, 2022. 

Leutenegger et al. “Keyframe-based Visual-Inertial Odometry using Nonlinear 
Optimization,” The International Journal of Robotics Research, 2015. 

Mourikis, Roumeliotis. “A Multi-State Constraint Kalman Filter for Vision-aided Inertial 
Navigation,” ICRA, 2007.
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•Conclusions: 
• MSCKF outperforms OK-VIS 

and SWFs.
• MSCKF recovers more easily 

from localization errors, by 
marginalizing in a manner that 
usually maintains some poses 
arbitrarily far in the past.


• (Older poses supply better 
localization information.)

Back End: Experiments

Saxena, Chiu, et al, “Simultaneous Localization and Mapping: Through the Lens of 
Nonlinear Optimization,” ICRA / R-AL, 2022. 

Leutenegger et al. “Keyframe-based Visual-Inertial Odometry using Nonlinear 
Optimization,” The International Journal of Robotics Research, 2015. 

Mourikis, Roumeliotis. “A Multi-State Constraint Kalman Filter for Vision-aided Inertial 
Navigation,” ICRA, 2007.



Loop Closures: Global Optimization
• What separates SLAM from odometry: 
• In addition to “local” real-time tracking: Maintain a "global" optimization 

problem over all poses, even ones marginalized out of the “local” problem.

• In addition to incremental pose constraints: Introduce "loop closure" 

constraints, activated when the robot re-visits parts of the map seen before. 

• Inference is done each time a new loop closure is registered: 
•
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1) Original global problem 2) Introduce loop closure 

constraint 3) Run inference



Loop Closure Detection
• To establish loop closures: 

• Detect when the camera is looking at the same place as some time in the past.

• Naive method: Compare every detected feature to every feature we have seen 

so far. Terrible.

• Bag-of-words approach: Assigns a global, binary descriptor to each image, 

encoding the presence or absence of certain features.

65
Gálvez-López, Dorian, and Juan D. Tardos. "Bags of binary words for fast place recognition in image sequences." IEEE Transactions on Robotics (2012)



Outline
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• Front End 
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• Back End 
• Goal, Setup
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• Aside: Kalman Filtering, Basics

• Example: EKF SLAM

• State-of-the-art Algorithms

• Experiments

• Loop Closures


• Next Steps 
• Active Perception: Dynamic, Semantic SLAM
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Next Steps: Active Perception
• “Controlling robot motion to minimize localization and map reconstruction 

uncertainty.” (Cadena et al.)
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Video credits: https://www.youtube.com/watch?v=dQ6bY0XrZeg&t=165s

Cadena et al. “Past, Present, and Future of Simultaneous Localization and Mapping:  Toward the Robust-Perception Age.” IEEE Transactions on Robotics, 2016. 

R. Bajcsy, “Active perception,” Proc. IEEE, vol. 76, no. 8, pp. 966–1005, Aug. 1988.

Davison et al., “FutureMapping: The Computational Structure of Spatial AI Systems.”

https://www.youtube.com/watch?v=dQ6bY0XrZeg&t=165s


Next Steps: Semantic SLAM
• Learning-based feature labeling + Optimization-based back end.

68

Video Credit: “SLAM++: Simultaneous Localisation and Mapping at the Level of Objects,“ (https://www.youtube.com/watch?v=tmrAh1CqCRo)

Cadena et al. “Past, present, and future of simultaneous localization and mapping:  Toward the robust-perception age.” IEEE Transactions on Robotics, 2016. 

Davison et al., “FutureMapping: The Computational Structure of Spatial AI Systems.”

https://www.youtube.com/watch?v=tmrAh1CqCRo


• Goal: Use SLAM to track moving features.

• This enhances intent inference  motion predictions of other agents  

safety and efficiency of planned trajectories.
→ →
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Cadena et al. “Past, Present, and Future of Simultaneous Localization and Mapping:  Toward the Robust-Perception Age.” IEEE Transactions on Robotics, 2016. 

Zhang, Henein et al., “VDO-SLAM: A Visual Dynamic Object-aware SLAM System,” ArXiv, 2020.

Next Steps: Dynamic SLAM
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Next Steps: Dynamic SLAM
• Goal: Use SLAM to track moving features.

• Recall: 3-step back-end procedure for Static SLAM

• Feature Augmentation (Cost Construction Step)

• Feature Update (Gauss-Newton Step)

• State Propagation (Marginalization Step)


• Missing pieces for Dynamic SLAM:

• Identifying which features belong to a single moving object (front-end)

• Optimizing a motion model for moving objects (back-end)

• Ensuring motion model smoothness for moving objects (back-end)

Chiu, “SLAM Backends with Objects in Motion: A Unifying Framework and Tutorial,” ACC 2023. 



71

Next Steps: Dynamic SLAM
• Goal: Use SLAM to track moving features.

• Roadmap: 5-step procedure for Static SLAM

• Feature Augmentation (Cost Construction Step)

• Moving Object Pose Augmentation (Gauss-Newton Step)

• Feature Update (Gauss-Newton Step)

• Smoothing Factor Augmentation (Gauss-Newton Step)

• State Propagation (Marginalization Step)


•

Chiu, “SLAM Backends with Objects in Motion: A Unifying Framework and Tutorial,” ACC 2023. 



Questions?
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Appendix



Front End: Data Association
• SIFT:      (Scale-Invariant Feature Transform) 
• Feature matching algorithm, invariant to scale and rotations

• Uses high-dimensional feature descriptors in each object for identification

• Heavy computational burden — Too slow for SLAM

• Subject to licensing restrictions (in contrast, ORB is open-source)

78
Lowe. “Object Recognition from Local Scale-Invariant Features,” ICCV 1999.

SIFT, OpenCV Code: https://docs.opencv.org/4.x/da/df5/tutorial_py_sift_intro.html

https://docs.opencv.org/4.x/da/df5/tutorial_py_sift_intro.html


Front End: Data Association
• SURF:      (Speeded-up Robust Features) 
• Designs feature descriptors to have descriptive power and computation speed

• Has poorer performance compared to ORB

• Subject to licensing restrictions (in contrast, ORB is open-source)


•
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Bay et al. “SURF: Speeded up Robust Features,” ECCV 2006.

SURF, OpenCV Code: https://docs.opencv.org/3.4/df/dd2/tutorial_py_surf_intro.html

https://docs.opencv.org/3.4/df/dd2/tutorial_py_surf_intro.html


Deep Learning Interventions
• Deep pose estimation:


Kendall, Alex, Matthew Grimes, and Roberto Cipolla. "Posenet: A convolutional network for real-time 6-dof 
camera relocalization." Proceedings of the IEEE international conference on computer vision. 2015.

Mohanty, Vikram, et al. "Deepvo: A deep learning approach for monocular visual odometry." arXiv preprint 
arXiv:1611.06069 (2016).

Wang, Sen, et al. "Deepvo: Towards end-to-end visual odometry with deep recurrent convolutional neural 
networks." 2017 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2017.


• Deep data association:

Hou, Yi, Hong Zhang, and Shilin Zhou. "Convolutional neural network-based image representation for visual 
loop closure detection." 2015 IEEE international conference on information and automation. IEEE, 2015.

DeTone, Daniel, Tomasz Malisiewicz, and Andrew Rabinovich. "Toward geometric deep slam." arXiv preprint 
arXiv:1707.07410 (2017).
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Deep Learning Interventions
• Tight fusion into the SLAM pipeline:


Li, Ruihao, Sen Wang, and Dongbing Gu. "Deepslam: A robust monocular slam system with unsupervised 
deep learning." IEEE Transactions on Industrial Electronics 68.4 (2020): 3577-3587.

Li, Yang, Yoshitaka Ushiku, and Tatsuya Harada. "Pose graph optimization for unsupervised monocular 
visual odometry." 2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019.


• Deep map enhancement:

Salas-Moreno, Renato F., et al. "Slam++: Simultaneous localisation and mapping at the level of objects." 
Proceedings of the IEEE conference on computer vision and pattern recognition. 2013.

McCormac, John, et al. "Semanticfusion: Dense 3d semantic mapping with convolutional neural networks." 
2017 IEEE International Conference on Robotics and automation (ICRA). IEEE, 2017.

Nicholson, Lachlan, Michael Milford, and Niko Sünderhauf. "Quadricslam: Dual quadrics from object 
detections as landmarks in object-oriented slam." IEEE Robotics and Automation Letters 4.1 (2018): 1-8.

Yu, Chao, et al. "DS-SLAM: A semantic visual SLAM towards dynamic environments." 2018 IEEE/RSJ 
International Conference on Intelligent Robots and Systems (IROS). IEEE, 2018.

81



Back End: EKF SLAM
• Theorem: Feature Augmentation = Cost Construction + 

Gauss-Newton Step: 

• Proof Sketch: 
• Filtering approach—Linearize inverse measurement model (image  feature 

position), then perform a MAP estimate update using this linearized function

• Optimization approach—Use measurement model to form a nonlinear least-

squares cost, then perform one Gauss-Newton step on this cost

• Theorem 6.1 shows that these two approaches are equivalent.

→
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Back End: EKF SLAM
• Theorem: Feature Update = Gauss-Newton Step: 

• Proof Sketch: 
• Filtering approach—Linearize measurement model, then perform a MAP 

estimate update using this linearized function

• Optimization approach—Use measurement model to form a nonlinear least-

squares cost, then perform one Gauss-Newton step on this cost

• Theorem 6.2 shows that these two approaches are equivalent.
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Back End: EKF SLAM
• Theorem: State Propagation = Marginalization Step: 

• Proof Sketch: 
• Filtering approach—Linearize dynamics model, then perform a MAP 

estimate update using this linearized function

• Optimization approach—Use dynamics model to form a nonlinear least-

squares cost, then perform one marginalization step on this cost

• Theorem 6.3 shows that these two approaches are equivalent.
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Dynamic SLAM
• In motion planning, some features often belong to moving objects that may 

be other robotic agents, dynamic obstacles, etc.

• Extend the SLAM pipeline to track features on a collection of moving rigid 

bodies in the scene.

• In these scenarios, the above optimization framework must be adapted to 

account for feature motion.

• Additional optimization variables for moving features.

• Motion constraints between moving features.

• Motion model?
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Wang, Chieh-Chih, et al. "Simultaneous localization, mapping and moving object tracking." The International Journal of Robotics Research 26.9 (2007): 889-916.



Back End: Setup and Terminology
•Dynamics model with an example: 
• General form: 


• Associated residual: 

• Example—2D Extended Kalman Filter (EKF): 
• Pose:

• Noise:

• Dynamics:

86

, with .xt+1 = g(xt) + wt wt ∼ N(0,Σw), ∀t ≥ 0
xt+1 − g(xt)

g : ℝdx → ℝdx

·x1
t = v cos θt + w1

t
·x2
t = v sin θt + w2

t·θt = ω + w3
t

wt := (w1
t , w2

t , w3
t ) ∈ ℝ3

xt := (xt,1, xt,2, θt) ∈ ℝ3



Back End: Setup and Terminology
•Measurement model with an example: 
• General form: 


• Associated residual: 

• Example—2D Extended Kalman Filter (EKF): 
• Feature positions:

• Image measurements:

• Noise:

• Measurement model:
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, with .zt,j = h(xt, ft,j) + vt,j vt,j ∼ N(0,Σv), ∀t ≥ 0
h : ℝdx × ℝdf → ℝdz

zt,j − h(xt, ft,j)

ft,j := ( f1
t,j, f2

t,j) ∈ ℝ2

zt,j := (z1
t,j, z2

t,j) ∈ ℝ2

vt := (v1
t , v2

t ) ∈ ℝ2

z1
t,j = f1

t,j − x1
t + v1

t

z2
t,j = f2

t,j − x2
t + v2

t



Back End: Marginalization
•Marginalization: 
• Equivalence to the Schur complement method:


• 
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Optimization-Based Framework — Proof
• Feature Augmentation = Gauss-Newton Step: 

• Proof (Sketch): 
• Concatenate terms:


• Rewrite cost:
89



Optimization-Based Framework — Proof
• Feature Augmentation = Gauss-Newton Step: 

• Proof (Sketch): 
• Compute  and :


• Apply Gauss-Newton Equations:

C(x̃t) J
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Optimization-Based Framework — Proof
• Feature Augmentation = Gauss-Newton Step: 

• Proof (Sketch): 
• Result — The Gauss-Newton Equations above yield Alg. 2, Lines 4, 9:

91



Optimization-Based Framework — Proofs
• Feature Update = Gauss-Newton Step: 

• Proof (Sketch): 
• Concatenate terms:


• Rewrite cost:
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Optimization-Based Framework — Proofs
• Feature Update = Gauss-Newton Step: 

• Proof (Sketch): 
• Compute  and :


• Apply Gauss-Newton Equations:

C(x̃t) J
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Optimization-Based Framework — Proofs
• Feature Update = Gauss-Newton Step: 

• Proof (Sketch): 
• Result — The Gauss-Newton Equations above yield Alg. 3, Lines 5-6:
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Optimization-Based Framework — Proofs
• State Propagation = Marginalization Step: 

• Proof (Sketch): 
• Identify :


•

cK, cM, CK, CM
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Optimization-Based Framework — Proofs
• State Propagation = Marginalization Step: 

• Proof (Sketch): 
• Compute , and apply Marginalization equations:JK, JM
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Optimization-Based Framework — Proofs
• State Propagation = Marginalization Step: 

• Proof (Sketch): 
• Result — The Marginalization Equations above yield Alg. 4, Lines 5-6:
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