Control Barrier Functions for Nonlinear System Safety Control

Jason Jangho Choi

Berkeley Mechanical Engineering

HYBRID ROBOTICS GROUP @ BERKELEY

Mar. 22, 2023 @EECS 206B

Big gap between what state-of-the-art controllers

can achieve

and what they *guarantee*...

Many real-world applications are **safety-critical!**

Aircraft control

Source: NASA

Advanced Air Mobility in safety-critical and highly congested environments

Safety Filter – Basic concept

Wabersich*, Taylor*, Choi* et al., Data-Driven Safety Filters, Under review

Control Barrier Functions for safety control

Liao et al., Arxiv'22

Grandia et al., ICRA'21

Control Barrier Functions for safety control

Autonomous mobile robots

Zeng et al., ACC'211

Xu et al., ICRA'18²

Wang et al., TRo'17, ICRA'17

Manipulators

Singletary et al., Arxiv 2022

Infection control

Moln´ar et al., L-CSS'21

Contents

Part 1. Background

- Safety Filter
- Control Invariance

Part 2. Introduction to CBF

- Control Barrier Function
- Comparison principle perspective.
- Nagumo's theorem perspective.
- CBF-based safety filter for control-affine systems: CBF-QP

Part 3. Alternative methods for safety control

- Hamilton-Jacobi Reachability
- Model Predictive Control

1. Background

Safety Filter – Basic concept

Wabersich*, Taylor*, Choi* et al., Data-Driven Safety Filters, Under review

Safety Filter – Basic concept

$$u(\cdot) = \underset{v(\cdot)}{\operatorname{argmin}} \int_{t=0}^{\infty} ||v(t) - u_{\operatorname{des}}(t)|| dt$$

Minimum deviation from desired control
s.t. $v(\cdot) \in \mathcal{PC}(\mathbb{R}_{\geq 0}, \mathcal{U})$ admissible control signal
 $x(0) = x_0,$
for all $t \in \mathbb{R}_{\geq 0}$:
 $\dot{x}(t) = f(x(t), v(t)),$
 $x(t) \in \mathcal{X}.$ target safety constraint

Two main problems in desig

Safe set synthesis

Not all states in the target safe set χ is safe.

Forward Invariance for autonomous systems & Nagumo's theorem h(x)

A set S is <u>forward invariant</u> for the system $\dot{\mathbf{x}}(t) = f(\mathbf{x}(t))$ if for any initial state $\mathbf{x}(0) \in S$, $\mathbf{x}(t) \in S$ for all $t \ge 0$. $\hat{\mathbf{x}}(t) = f(\mathbf{x}(t))$

How do we check if *S* is forward invariant?

 $\dot{h}(x) \ge 0$ $\forall x \in \partial S$

is (forward) invariant!

Control Invariance for control systems & Tangential characterization of control invariant sets

Weiland, Allgöwer, IFAC'07, Prajna, Automatica'06

Control invariant set and Barrier Function / Certificate

Ames et al, Control Barrier Function Based Quadratic Programs for Safety Critical Systems, TAC'17

General design procedure of safe controllers

1. Define the target safe set \mathcal{X} based on the safety specifications.

2. Verify a <u>control invariant</u> set *S* contained in \mathcal{X} .

3. Design a safe controller $\varkappa_s(x)$ and verify that *S* is <u>forward invariant</u> for the closed-loop dynamics under \varkappa_s .

 $\dot{\mathbf{x}}(t) = f(\mathbf{x}(t), \boldsymbol{\varkappa}_{s}(\mathbf{x}(t)))$

Most basic safety filter

Θ

1. Strictly inside the set, the trajectory is allowed to do whatever the desired control signal wants.

 $\dot{h}(x, \varkappa_s(x)) \ge 0, x \in \partial S$

Example: Inverted Pendulum

$$\underbrace{\frac{d}{dt} \begin{bmatrix} \theta \\ \dot{\theta} \end{bmatrix}}_{\dot{x}} = \underbrace{\begin{bmatrix} \dot{\theta} \\ g \sin \theta \end{bmatrix}}_{f(x)} + \underbrace{\begin{bmatrix} 0 \\ \frac{1}{m\ell^2} \end{bmatrix}}_{g(x)} u$$
Input constraint: $\mathcal{U} = \{u \in \mathbb{R} | |u| \le 3\}$
Target safety constraint: $\mathcal{X} = \{x \in \mathbb{R}^2 | |x_1| \le 0.3\}$
Desired (unsafe) control signal: $u_{des}(t) = \begin{cases} 3, & t \in [0,2) \\ -3, & t \in [2,4) \\ 3, & t \in [4,6) \\ m\ell^2 \left(-\frac{g}{\ell} \sin x_1 - [1.5, 1.5]x\right), & else \end{cases}$

Example: Unsafe desired control signal

Wabersich*, Taylor*, Choi* et al., Data-Driven Safety Filters, Under review

Example: Basic safety filter

θ

$$\kappa_F(x, u_{\text{des}}(t)) = \begin{cases} \kappa_S(x), & x \in \partial S \text{ or } u_{\text{des}}(t) \notin \mathcal{U}, \\ u_{\text{des}}(t), & \text{else.} \end{cases}$$

The backup controller $\varkappa_S(x)$ and the safe set *S* is designed by the LQR and its Lyapunov function.

$$\mathcal{S} = \left\{ x \in \mathbb{R}^2 \mid \gamma - x^\top P x \ge 0 \right\}$$

2. Introduction to CBF

Main Idea: Smooth Braking

Rather than "hard stop" at the boundary, why not <u>"smoothly brake"</u> the trajectory as it approaches the boundary?

Control Barrier Function

 $B(x): \mathbb{R}^{n} \to \mathbb{R}, \text{ a continuously differentiable function.}$ $S = \{x \mid B(x) \ge 0\}, \nabla B(x) \neq 0 \text{ for all } x \in \partial S.$ $B(x) \text{ is a Control Barrier Function if } \exists \gamma > 0 \text{ s.t. for all } x \in S$ $\sup_{u \in U} \dot{B}(x, u) + \gamma B(x) \ge 0.$ $\dot{B}(x) = -\gamma B(x)$

I will call this "smooth braking constraint".

Original Definition: Ames et al, Control Barrier Function Based Quadratic Programs for Safety Critical Systems, TAC'17

Safety Guarantee

Main Theorem: Given a set *S*, if the CBF *B* exist, under u(*t*) that satisfies the smooth braking constraint, the set *S* is forward invariant.

Formal statements and proofs: Ames et al, TAC'17, Jankovic, Automatica'18

Proof: Comparison principle perspective

Proof: Nagumo's theorem perspective

• Smooth braking constraint at the boundary:

 $\dot{B}(x,u) \ge -\gamma B(x) = 0$

• Therefore, according to the definition of the CBF, at the boundary,

 $\exists u \in U \text{ s.t. } \dot{B}(x,u) \ge 0$

• From Nagumo's theorem, the set is forward invariant.

Dynamics – Control Affine System

We will mainly deal with a specific type of a nonlinear system, a **control affine system**:

 $\dot{x} = f(x) + g(x)u$ "drift term" "actuation effect" "autonomous vector field" "control vector field" where $f: \mathbb{R}^n \to \mathbb{R}^n$ and $g: \mathbb{R}^n \to \mathbb{R}^{n \times m}$ are Lipschitz continuous in x.

Many mechanical systems are control affine systems:

$$\begin{bmatrix} \dot{q} \\ \ddot{q} \end{bmatrix} = \begin{bmatrix} \dot{q} \\ D^{-1}(-C\dot{q} - G) \end{bmatrix} + \begin{bmatrix} 0 \\ D^{-1}B \end{bmatrix} u$$

CBF-QP: Min-norm safety filter

• QP for control-affine systems ($\dot{x} = f(x) + g(x)u$)

- CBF constraint can be relaxed if infeasibility is concerned.
- Closed-form solution exists for single-constraint unbounded CBF-QP * .

Example: Inverted Pendulum

$$\underbrace{\frac{d}{dt} \begin{bmatrix} \theta \\ \dot{\theta} \end{bmatrix}}_{\dot{x}} = \underbrace{\begin{bmatrix} \dot{\theta} \\ g \sin \theta \end{bmatrix}}_{f(x)} + \underbrace{\begin{bmatrix} 0 \\ \frac{1}{m\ell^2} \end{bmatrix}}_{g(x)} u$$
Input constraint: $\mathcal{U} = \{u \in \mathbb{R} | |u| \le 3\}$
Target safety constraint: $\mathcal{X} = \{x \in \mathbb{R}^2 | |x_1| \le 0.3\}$
Desired (unsafe) control signal: $u_{des}(t) = \begin{cases} 3, & t \in [0,2) \\ -3, & t \in [2,4) \\ 3, & t \in [4,6) \\ m\ell^2 \left(-\frac{g}{\ell} \sin x_1 - [1.5, 1.5]x\right), & else \end{cases}$

Example: Quadratic form (Lyapunov-based design)

$$h_{\mathcal{S}}(x) = 1 - x^{\top} \begin{pmatrix} 1/a^2 & 0.5/ab \\ 0.5/ab & 1/b^2 \end{pmatrix} x$$

Evaluate the CBF constraint feasibility:

 $\nabla h_{\mathcal{S}}(x)g(x) = 0 \Rightarrow \nabla h_{\mathcal{S}}(x)f(x) + \alpha(h_{\mathcal{S}}(x)) > 0,$

Determine the valid parameters:

$$\gamma \ge 0.2$$
, $a = 5/6$, $b = 5/3$

This procedure can be done more generally by constructing an optimization problem¹.

Example: Quadratic form (Lyapunov-based design)

$$h_{\mathcal{S}}(x) = 1 - x^{ op} \left(egin{array}{ccc} 1/a^2 & 0.5/ab \ 0.5/ab & 1/b^2 \end{array}
ight) x$$
 , $\gamma = 0.2$

Wabersich*, Taylor*, Choi* et al., Data-Driven Safety Filters, Under review

Example: Quadratic form (Lyapunov-based design)

$$h_{\mathcal{S}}(x) = 1 - x^{ op} \left(egin{array}{ccc} 1/a^2 & 0.5/ab \ 0.5/ab & 1/b^2 \end{array}
ight) x$$
 , $\gamma = 2.0$

Wabersich*, Taylor*, Choi* et al., Data-Driven Safety Filters, Under review

Crucial design step 1: Choice of CBF B(x)

- 1. CBF zero-superlevel set has to be contained in X.
- 2. The zero-superlevel set has to be control invariant.

Crucial design step 2: Choice of γ

γ decides the profile of smooth braking.

- Small γ is more anticipative, but more restrictive. Crucially, the smooth braking constraint can be infeasible if γ is not large enough.
- Large γ is less restrictive, but more myopic.

CBF-CLF Helper

- Library: <u>https://github.com/HybridRobotics/CBF-CLF-Helper</u>
- Designed to let users easily implement safety-controller based on CBFs and CLFs with Matlab.
 - An easy interface for construction and simulation of a control-affine system.
 - Safety controller including CLF-QP, CBF-QP, and CBF-CLF-QP as built-in functions.
- New version releasing soon
 - <u>https://github.com/ChoiJangho/CBF-CLF-Helper/tree/feedback_linearization</u>
 - Supports feedback linearization, numerical CBFs, more demos.

Main Research Challenges

- Finding / designing a valid CBF
 - Finding "good" control invariant sets
 - Guaranteeing CBF constraints under control input bounds
 - Sum-of-squares programming
 - Dai, Permenter, Convex synthesis and verification of control-Lyapunov and barrier functions with input constraints, ACC'23
 - Deep Learning
 - Dawson et al., Safe Control With Learned Certificates: A Survey of Neural Lyapunov, Barrier, and Contraction Methods for Robotics and Control, TRO'23
 - Castaneda et al., In-Distribution Barrier Functions: Self-Supervised Policy Filters that Avoid Out-of-Distribution States, L4DC'23
- Combining with other methods
 - Hamilton-Jacobi Reachability
 - MPC

3. Alternative methods: Hamilton-Jacobi Reachability& MPC

- Control Objective: to avoid the unsafe region during all prescribed future time horizon.
- (Inevitable) Backward Reachable Tube (BRT) of the unsafe region

- Control Objective: to avoid the unsafe region during all prescribed future time horizon.
- (Inevitable) Backward Reachable Tube (BRT) of the unsafe region

Value Function

$$V(\mathbf{x}(t), t) = \sup_{u(\cdot) \in \mathcal{U}} \min_{\tau \in [t,0]} l(\mathbf{x}(\tau))$$

Dynamic Programming Principle

 $V(\mathbf{x}(t), t) = \sup_{u(\cdot) \in \mathcal{U}} \min \left\{ l(\mathbf{x}(t)), V(\mathbf{x}(t+\delta), t+\delta) \right\}$

HJ-VI:

$$0 = \min\left\{l(x) - V(x,t), D_t V(x,t) + \max_{u \in U} D_x V(x,t) \cdot f(x,u)\right\}$$

Target setDynamic Programming Principle
$$(1/c) < (x, t), b_i < (x, t$$

Value Function

$$V(\mathbf{x}(t), t) = \sup_{u(\cdot) \in \mathcal{U}} \min_{\tau \in [t, 0]} l(\mathbf{x}(\tau), \tau)$$

Dynamic Programming Principle

 $V(\mathbf{x}(t), t) = \sup_{u(\cdot) \in \mathcal{U}} \min \left\{ l(\mathbf{x}(t)), V(\mathbf{x}(t+\delta), t+\delta) \right\}$

HJ-VI:

$$0 = \min\left\{l(x) - V(x,t), D_t V(x,t) + \max_{u \in U} D_x V(x,t) \cdot f(x,u)\right\}$$

$$\pi_V^*(x,t) \in K_V(x,t) \\ := \{ u \in U : D_t V(x,t) + D_x V(x,t) \cdot f(x,u) \ge 0 \}$$

Least-restrictive reachability safety filter

$$\kappa_F(x, u_{\text{des}}(t)) = \begin{cases} \pi_V^*(x), & V(x) \le \epsilon \\ u_{\text{des}}(t), & \text{else.} \end{cases}$$

Example: Least-restrictive reachability safety filter

$$\kappa_F(x, u_{\text{des}}(t)) = \begin{cases} \pi_V^*(x), & V(x) \le \epsilon \\ u_{\text{des}}(t), & \text{else.} \end{cases}$$

U

Predictive Safety Filter (MPC)

• Discrete-time formulation:

$$x(k+1) = x(k) + \Delta T f(x(k), u(k)) = f(x(k), u(k)).$$

$$\begin{split} \min_{u_{i|k}} & \|u_{des}(k) - u_{0|k}\| \\ \text{s.t.} & x_{i+1|k} = \mathsf{f}(x_{i|k}, u_{i|k}), \\ & x_{0|k} = x(k), \end{split}$$

$$\begin{aligned} \mathsf{Target \ safety \ constraint:} & x_{i|k} \in \mathcal{X}, & \text{for } i = 0, ..., N-1, \\ & \mathsf{Input \ constraint:} & u_{i|k} \in \mathcal{U}, & \text{for } i = 0, ..., N-1, \end{aligned}$$

$$\begin{aligned} \mathsf{Terminal \ set \ constraint:} & x_{N|k} \in \mathcal{S}^t, \end{aligned}$$

Predictive Safety Filter (MPC)

- In order to guarantee recursive feasibility, the terminal set has to be control invariant.
- A feasible sequence of $u_{i|k}$ serves as the "backup" plan.

Example: Predictive Safety Filter

Terminal invariant set designed based on robust Lyapunov function:

$$\mathcal{S}_{\gamma}^{t} = \left\{ x \in \mathbb{R}^{n_{x}} \mid \gamma - x^{\top} P x \ge 0 \right\} \text{ with } \gamma \in (0, 1]$$

Lyapunov stability condition:

$$\left(A_{K}x + r_{K}(x)\right)^{\top} P\left(A_{k} + r_{K}(x)\right) - x^{\top} P x \leq 0$$

Solve for the maximal γ such that the above condition is satisfied.

Berkeley

Example: Predictive Safety Filter

Example: Summary

Comparison with HJ reachability and Predictive filter

Comparison with HJ reachability and Predictive filter

Control Barrier Functions				
Pros	Cons			
 Ease of implementation Smooth safety filtering	CBF synthesisInstantaneous decision making			

Comparison with HJ reachability and Predictive filter

Hamilton-Jacobi Reachability						
Pros	Cons					
Maximal safe setSafety certification of systems	Curse of dimensionalityIndirect synthesis of filter	$HJ \leftrightarrow PSF$: Optimal control based				
		[Predictive Control			
CBF↔HI: Explicit safe sets			Pros	Cons		
5 1			Scalable to large-scale systemsPredictive decision making	Complexity of robust designHeavy online computation		
Control Barr	ier Functions	.	DCE () CDE, Smooth filtoring			
Pros	Cons		rSr↔CBr: Smooth filtering			
Ease of implementationSmooth safety filtering	CBF synthesisInstantaneous decision making					

The core of all three methods – Finding control invariant sets!

Hamilton-Jacobi Reachability						
Pros	Cons	_				
 Maximal safe set Safety certification of systems 	Curse of dimensionalityIndirect synthesis of filter	HJ↔PSF: Optimal control based				
			Prodict	tivo Control		
			Treater			
CBF↔HI: Explicit safe sets			Pros	Cons		
			Scalable to large-scale systemsPredictive decision making	Complexity Heavy online	Complexity of robust designHeavy online computation	
Control Barr	ier Functions		DCE & CDE Consult (1)			
Pros	Cons	PSF↔CBF: Smooth filtering				
Ease of implementationSmooth safety filtering	CBF synthesisInstantaneous decision making			i erminal set design'		

Thank you, Questions are welcomed! jason.choi@berkeley.edu

CBF-CLF-Helper: <u>https://github.com/HybridRobotics/CBF-CLF-Helper</u>

Appendix—Robustness of CBF

Robustness of CBF-1. Attractivity of the zero-superlevel set

$\dot{B}(x,u) \ge -\gamma B(x)$

• If B(x) < 0, Define $V(x) \coloneqq -B(x)$. Then

 $\dot{V}(x,u) \leq -\gamma V(x).$

- This is the condition of exponential stability!
- Even if the trajectory exits the safe set accidently, it can promptly recover to the set.

Example: Recovery of CBF-QP to the safe set

$$h_{\mathcal{S}}(x) = 1 - x^{ op} \left(\begin{smallmatrix} 1/a^2 & 0.5/ab \\ 0.5/ab & 1/b^2 \end{smallmatrix}
ight) x , \qquad x_0 \notin S$$

Robustness of CBF- 2. Input-to-state safety (ISSf)

• System with bounded disturbance:

 $\dot{\mathbf{x}}(t) = f(\mathbf{x}(t), \mathbf{u}(t))\} + d(t), \ |\nabla B(\mathbf{x}(t)) \cdot d(t)| \le \bar{d}$

• Let the CBF *B* satisfy the following property:

 $\sup_{u \in U} \dot{B}(x, u) + \gamma B(x) \ge -\bar{d} \text{ for all } x \in \mathcal{X}$

• For all $x \in \mathcal{X}$ such that $B(x) \leq -\overline{d}/\gamma$

$$\sup_{u\in U} \dot{B}(x,u) \ge -\gamma B(x) - \bar{d} \ge 0.$$

• Thus, according to Nagumo's theorem $\{x \mid B(x) \ge -\overline{d}/\gamma\}$ is control invariant.

Example: Input-to-state safety of CBF

$$|\nabla B(\mathbf{x}(t)) \cdot d(t)| \le \bar{d} = 0.02, \ \gamma = 2.0, \ -\bar{d}/\gamma = -0.01$$

