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between what state-of-the-art controllersBig gap

can achieve and what they       guarantee…



Many real-world applications are safety-critical!

Aubin et al., 2011

Jones et al., AIAA’22

Aircraft control

Source: NASA

Advanced Air Mobility in 
safety-critical and highly congested environments



Safety Filter – Basic concept

Safety filtered
control action

Current State

Potentially unsafe
control action

𝑢!"#

𝑢#$%"

System
𝑥̇ 𝑡 = 𝑓(𝑥 𝑡 , 𝑢 𝑡 )

Safety Filter
𝜘!(𝑥 𝑡 , 𝑢"#$ 𝑡 )

𝑥 𝑡𝑢!"#$ 𝑡

𝑢%$! 𝑡

Wabersich*, Taylor*, Choi* et al., Data-Driven Safety Filters, Under review



Control Barrier Functions for safety control

Grandia et al., ICRA’21Liao et al., Arxiv’22



Autonomous mobile robots

Zeng et al., ACC’211

Xu et al., ICRA’182

Wang et al., TRo’17, ICRA’17

Infection control

Moln´ar et al., L-CSS’21

Control Barrier Functions for safety control
Manipulators

Singletary et al., Arxiv 2022
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1. Background



Safety Filter – Basic concept

Safety filtered
control action

Current State

Potentially unsafe
control action

𝑢!"#

𝑢#$%"

System
𝑥̇ 𝑡 = 𝑓(𝑥 𝑡 , 𝑢 𝑡 )

Safety Filter
𝜘!(𝑥 𝑡 , 𝑢"#$ 𝑡 )

𝑥 𝑡𝑢!"#$ 𝑡

𝑢%$! 𝑡

Wabersich*, Taylor*, Choi* et al., Data-Driven Safety Filters, Under review



Safety Filter – Basic concept

System
𝑥̇ 𝑡 = 𝑓(𝑥 𝑡 , 𝑢 𝑡 )

Safety Filter
𝜘!(𝑥 𝑡 , 𝑢"#$ 𝑡 )

𝑥 𝑡𝑢!"#$ 𝑡

𝑢%$! 𝑡

Minimum deviation from desired control

admissible control signal

target safety constraint

Wabersich*, Taylor*, Choi* et al., Data-Driven Safety Filters, Under review



Two main problems in designing safety filters

• Safe set synthesis

Not all states in the target safe set 𝝌 is safe.

Failure region (𝜒!)

• Safe control signal synthesis
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Regulating the control signal such that we remain 
in the safe set 𝑆.

Safe set 𝑆

Inevitably 
unsafe region



𝑆 = 𝑥 ℎ 𝑥 ≥ 𝟎}

𝑥&
ẋ(𝑡) = 𝑓(x(𝑡))

ℎ̇ 𝑥 ≥ 0
∀ 𝑥 ∈ 𝜕𝑆

ℎ(𝑥)
Forward Invariance for autonomous systems
& Nagumo’s theorem

How do we check if 𝑆 is forward invariant?
is (forward) invariant!

𝑆

A set 𝑆 is forward invariant for the system ẋ(𝑡) = 𝑓(x 𝑡 )
if for any initial state x 0 ∈ 𝑆, 

x 𝑡 ∈ 𝑆 for all 𝑡 ≥ 0. 



Control Invariance for control systems
& Tangential characterization of control invariant sets

∃𝑢, ℎ̇ 𝑥, 𝑢 ≥ 0
∀ 𝑥 ∈ 𝜕𝑆

ℎ(𝑥)

ẋ(𝑡) = 𝑓(x(𝑡), u(𝑡))

A set 𝑆 is control invariant for the system ẋ(𝑡) = 𝑓(x 𝑡 , 𝑢(𝑡))
if for any initial state x 0 ∈ 𝑆,  there exists a control input 
signal 𝑢(:) ∈ 𝒰 under which

x 𝑡 ∈ 𝑆 for all 𝑡 ≥ 0. 

𝑆 {𝑓 𝑥, 𝑢 | 𝑢 ∈ 𝑈}



Control invariant set and Barrier Function / Certificate

Weiland, Allgöwer, IFAC’07,    Prajna, Automatica’06

Failure region (𝜒!)

Control invariant 
set 𝑆

ℎ 𝑥 ≥ 𝟎
ℎ 𝑥 < 𝟎

“Zeroing Barrier Function”



Control invariant set and Barrier Function / Certificate

Failure region (𝜒!)

Control invariant 
set 𝑆

ℎ 𝑥 → ∞ as 𝑥 → 𝜕𝑆

“Reciprocal Barrier Function”

Ames et al, Control Barrier Function Based Quadratic Programs for Safety Critical Systems, TAC’17



General design procedure of safe controllers

Failure region (𝜒!)

1. Define the target safe set 𝒳
based on the safety specifications.

Failure region (𝜒!)

2. Verify a control invariant set 𝑆
contained in 𝒳.

Control invariant 
set 𝑆

3. Design a safe controller 𝜘"(𝑥)
and verify that 𝑆 is forward invariant
for the closed-loop dynamics under 𝜘".

ẋ(𝑡) = 𝑓(x(𝑡), u(𝑡)) ẋ(𝑡) = 𝑓(x(𝑡), 𝜘!(x(𝑡)))

Failure region (𝜒!)

𝑆



Most basic safety filter

ℎ̇ 𝑥, 𝜘!(𝑥) ≥ 0 , 𝑥 ∈ 𝜕𝑆

2. On the boundary, you have to ensure that 
the trajectory is pushed back into the set.
The backup controller 𝜘!(𝑥) renders 𝑆 invariant. 

1. Strictly inside the set, the trajectory is allowed to do 
whatever the desired control signal wants.



Example: Inverted Pendulum

𝜃

𝑢

Input constraint:

Target safety constraint:

Desired (unsafe) control signal:

Wabersich*, Taylor*, Choi* et al., Data-Driven Safety Filters, Under review



Example: Unsafe desired control signal

𝜃

𝑢

Wabersich*, Taylor*, Choi* et al., Data-Driven Safety Filters, Under review

0 1 2 3 4 5 6 7 8 9

-1

0

1

0 1 2 3 4 5 6 7 8 9
-2

-1

0

1

2

0 1 2 3 4 5 6 7 8 9
-30

-20

-10

0

10

0 1 2 3 4 5 6 7 8 9
-0.4

-0.2

0

0.2

0.4

0.6

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2



Example: Basic safety filter

The backup controller 𝜘!(𝑥) and the safe set 𝑆 is designed by the LQR 
and its Lyapunov function.𝜃

𝑢

Wabersich*, Taylor*, Choi* et al., Data-Driven Safety Filters, Under review



2. Introduction to CBF



Main Idea: Smooth Braking

𝐵(𝑥)

Rather than “hard stop” at the boundary, 
why not “smoothly brake” the trajectory as it 
approaches the boundary?



Control Barrier Function

𝑡

𝐵 𝑥
𝐵̇ 𝑥, 𝑢 ≥ −𝛾𝐵 𝑥

𝐵̇ 𝑥 = −𝛾𝐵 𝑥

𝐵 𝑥 :ℝ% → ℝ, a continuously differentiable function.
𝑆 = 𝑥 𝐵 𝑥 ≥ 0}, ∇𝐵 𝑥 ≠ 0 for all 𝑥 ∈ 𝜕𝑆.
𝐵(𝑥) is a Control Barrier Function if ∃ 𝛾 > 0 s.t. for all 𝑥 ∈ 𝑆

sup
E∈F

𝐵̇ 𝑥, 𝑢 + 𝛾𝐵 𝑥 ≥ 0.

I will call this “smooth braking constraint”.

Original Definition: Ames et al, Control Barrier Function Based Quadratic Programs for Safety Critical Systems, TAC’17



Safety Guarantee

Formal statements and proofs: Ames et al, TAC’17,     Jankovic, Automatica’18

𝑡

𝐵 𝑥
𝐵̇ 𝑥, 𝑢 ≥ −𝛾𝐵 𝑥

𝐵̇ 𝑥 = −𝛾𝐵 𝑥

Main Theorem: Given a set 𝑆, if the CBF 𝐵 exist, 
under u(𝑡) that satisfies the smooth braking constraint, 

the set 𝑆 is forward invariant.



Proof: Comparison principle perspective

𝑡

𝐵 𝑥
𝐵̇ 𝑥, 𝑢 ≥ −𝛾𝐵 𝑥

𝐵̇ 𝑥 = −𝛾𝐵 𝑥

𝑏 𝑡 ≥ 𝑎 𝑡 ∀𝑡 ≥ 0.

Comparison Lemma:
Let 𝑎 : be the solution of the ODE

and 𝑏 : be a almost-everywhere differentiable function that satisfies

Then,   

𝑎̇ = 𝑓 𝑡, 𝑎 , 𝑎 0 = 𝑎&

𝑏̇ 𝑡 ≥ 𝑓 𝑡, 𝑏 𝑡 , 𝑏 0 = 𝑏& ≥ 𝑎&

𝑎 . 𝑏 .

Khalil, Nonlinear systems, Ch3.4



Proof: Nagumo’s theorem perspective

• Smooth braking constraint at the boundary:

• Therefore, according to the definition of the 
CBF, at the boundary,

• From Nagumo’s theorem, the set is forward 
invariant.∃𝑢 ∈ 𝑈 s. t.

𝐵̇ 𝑥, 𝑢 ≥ 0

𝐵̇ 𝑥, 𝑢 ≥ −𝛾𝐵 𝑥 = 0

∃𝑢 ∈ 𝑈 s. t. 𝐵̇ 𝑥, 𝑢 ≥ 0



Dynamics – Control Affine System
We will mainly deal with a specific type of a nonlinear system, a control affine system:

𝑥̇ = 𝑓 𝑥 + 𝑔 𝑥 𝑢

where 𝑓:ℝ% → ℝ% and 𝑔:ℝ% → ℝ%×' are Lipschitz continuous in 𝑥.

Many mechanical systems are control affine systems:

“drift term”
“autonomous vector field”

“actuation effect”
“control vector field”

𝑞̇
𝑞̈ =

𝑞̇
𝐷()(−𝐶𝑞̇ − 𝐺) + 0

𝐷()𝐵 𝑢



CBF-QP: Min-norm safety filter

• QP for control-affine systems (𝑥̇ = 𝑓 𝑥 + 𝑔 𝑥 𝑢)

argmin 𝑢 − 𝑢DEF
G

𝑢:	control input

𝐿*𝐵 𝑥 + 𝐿+𝐵 𝑥 𝑢 + 𝛾𝐵 𝑥 ≥ 0
𝑢 ∈ 𝑈

subject to:

• CBF constraint can be relaxed if infeasibility is concerned.
• Closed-form solution exists for single-constraint unbounded CBF-QP * .

*Alan et al., Control Barrier Functions and Input-to-State Safety with Application to Automated Vehicles, Arxiv’22

𝐵̇ 𝑥, 𝑢



Example: Inverted Pendulum

𝜃

𝑢

Input constraint:

Target safety constraint:

Desired (unsafe) control signal:

Wabersich*, Taylor*, Choi* et al., Data-Driven Safety Filters, Under review



Example: Quadratic form (Lyapunov-based design)

Evaluate the CBF constraint feasibility:

Determine the valid parameters:
𝛾 ≥ 0.2, 𝑎 = 5/6, 𝑏 = 5/3

This procedure can be done more generally by constructing an optimization problem1.

1. Wang et al., Permissive barrier certificates for safe stabilization using sum-of-squares, ACC 2018

𝜃

𝑢



Example: Quadratic form (Lyapunov-based design)

𝜃

𝑢
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Wabersich*, Taylor*, Choi* et al., Data-Driven Safety Filters, Under review
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Example: Quadratic form (Lyapunov-based design)

𝜃

𝑢

, 𝛾 = 2.0

Wabersich*, Taylor*, Choi* et al., Data-Driven Safety Filters, Under review



Crucial design step 1: Choice of CBF B(x)

Failure region (𝜒!)

Control invariant 
set 𝑆

𝐵 𝑥 ≥ 𝟎

1. CBF zero-superlevel set has to be contained in 𝒳.

2. The zero-superlevel set has to be control invariant.



Crucial design step 2: Choice of 𝛾

Failure region (𝜒!)

Control invariant 
set 𝑆

𝐵 𝑥 ≥ 𝟎

γ decides the profile of smooth braking.
• Small γ is more anticipative, but more restrictive. 

Crucially, the smooth braking constraint can be infeasible 
if γ is not large enough.

• Large γ is less restrictive, but more myopic.



CBF-CLF Helper
• Library: https://github.com/HybridRobotics/CBF-CLF-Helper
• Designed to let users easily implement safety-controller based on CBFs 

and CLFs with Matlab.
• An easy interface for construction and simulation of a control-affine system.
• Safety controller including CLF-QP, CBF-QP, and CBF-CLF-QP as built-in functions.

• New version releasing soon
• https://github.com/ChoiJangho/CBF-CLF-Helper/tree/feedback_linearization
• Supports feedback linearization, numerical CBFs, more demos.

https://github.com/HybridRobotics/CBF-CLF-Helper
https://github.com/ChoiJangho/CBF-CLF-Helper/tree/feedback_linearization


Main Research Challenges

• Finding / designing a valid CBF
• Finding “good” control invariant sets
• Guaranteeing CBF constraints under control input bounds
• Sum-of-squares programming

• Dai, Permenter, Convex synthesis and verification of control-Lyapunov and barrier functions with 
input constraints, ACC’23

• Deep Learning
• Dawson et al., Safe Control With Learned Certificates: A Survey of Neural Lyapunov, Barrier, and 

Contraction Methods for Robotics and Control, TRO’23
• Castaneda et al., In-Distribution Barrier Functions: Self-Supervised Policy Filters that Avoid Out-of-

Distribution States, L4DC’23

• Combining with other methods
• Hamilton-Jacobi Reachability
• MPC



3. Alternative methods:
Hamilton-Jacobi Reachability& MPC



HJ Reachability for safety control

• Control Objective: to avoid the unsafe region during all prescribed future time horizon.
• (Inevitable) Backward Reachable Tube (BRT) of the unsafe region

Failure region (ℒ!)

Target set

ℒ = 𝑥 𝑙 𝑥 ≥ 0}
Desired safe region



HJ Reachability for safety control

• Control Objective: to avoid the unsafe region during all prescribed future time horizon.
• (Inevitable) Backward Reachable Tube (BRT) of the unsafe region

Failure region (ℒ!)

Inevitable BRT of ℒ# for time horizon [𝑡, 0]

Target set

Finite-time Viability Kernel
𝒮(𝑡)



HJ Reachability for safety control

HJ-VI:

Dynamic Programming Principle

Value Function



HJ Reachability for safety control

HJ-VI:

Dynamic Programming Principle

Value Function

Failure region (ℒ!)

Inevitable BRT of ℒ! for time horizon [𝑡, 0]

Target set

Finite-time Viability Kernel



HJ Reachability for safety control

HJ-VI:

Dynamic Programming Principle

Value Function

Failure region (ℒ!)

Inevitable BRT of ℒ! for time horizon [𝑡, 0]

Target set

Finite-time Viability Kernel

Least-restrictive reachability safety filter



Example: Least-restrictive reachability safety filter

𝜃

𝑢



Predictive Safety Filter (MPC)

• Discrete-time formulation:

Target safety constraint:

Input constraint:

Terminal set constraint:



Predictive Safety Filter (MPC)

• In order to guarantee recursive feasibility, the terminal set has to be control invariant.
• A feasible sequence of 𝑢,|. serves as the “backup” plan.

Target safety constraint:

Input constraint:

Terminal set constraint:



Example: Predictive Safety Filter

𝜃

𝑢

Terminal invariant set designed based on robust Lyapunov function:

Lyapunov stability condition:

Solve for the maximal 𝛾 such that the above condition is satisfied. 



Example: Predictive Safety Filter

𝜃

𝑢 Implicit safe sets w.r.t. prediction horizon:



Example: Summary
𝜃

𝑢

Basic Safety Filter

CBF-QP

HJ Reachability

Predictive safety filter

Safe set comparison

Deviation from desired control



Comparison with HJ reachability and Predictive filter

HJ ReachabilityControl Barrier Functions Predictive Filter

𝑡

𝐵 𝑥

𝐵̇(𝑥, 𝑢)
𝐵̇ 𝑥 = −𝛾𝐵 𝑥

Source: Herbert, Bansal et al. CDC’17

Wabersich*, Taylor*, Choi* et al., Data-Driven Safety Filters, Under review



Comparison with HJ reachability and Predictive filter

Wabersich*, Taylor*, Choi* et al., Data-Driven Safety Filters, Under review



Comparison with HJ reachability and Predictive filter

Wabersich*, Taylor*, Choi* et al., Data-Driven Safety Filters, Under review



The core of all three methods – Finding control invariant sets!

Terminal set design1

Rosolia, Borrelli, et al., Learning model predictive control for iterative tasks. A Data-Driven Control Framework, TAC’17



Thank you, Questions are welcomed!
jason.choi@berkeley.edu

CBF-CLF-Helper: https://github.com/HybridRobotics/CBF-CLF-Helper

mailto:jason.choi@berkeley.edu
https://github.com/HybridRobotics/CBF-CLF-Helper


Appendix—Robustness of CBF



Robustness of CBF- 1. Attractivity of the zero-superlevel set

• If 𝐵 𝑥 < 0, Define 𝑉 𝑥 ≔ −𝐵 𝑥 . Then 

• This is the condition of exponential stability!
• Even if the trajectory exits the safe set accidently, it can promptly recover 

to the set.

Ames et al, Control Barrier Function Based Quadratic Programs for Safety Critical Systems, TAC’17

𝐵̇ 𝑥, 𝑢 ≥ −𝛾𝐵 𝑥

𝑉̇ 𝑥, 𝑢 ≤ −𝛾𝑉 𝑥 .
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Example: Recovery of CBF-QP to the safe set

𝜃

𝑢

, 𝑥S ∉ 𝑆



Robustness of CBF- 2. Input-to-state safety (ISSf)

Alan et al., Control Barrier Functions and Input-to-State Safety with Application to Automated Vehicles, Arxiv’22

• System with bounded disturbance:

ẋ(𝑡) = 𝑓(x(𝑡), u(𝑡))} + 𝑑(𝑡),  |∇𝐵(x(𝑡)) . 𝑑 𝑡 | ≤ 𝑑̅

• Let the CBF 𝐵 satisfy the following property: 

sup
E∈F

𝐵̇ 𝑥, 𝑢 + 𝛾𝐵 𝑥 ≥ −𝑑̅ for all 𝑥 ∈ 𝒳

• For all 𝑥 ∈ 𝒳 such that 𝐵 𝑥 ≤ −𝑑̅/𝛾
sup
E∈F

𝐵̇ 𝑥, 𝑢 ≥ −𝛾𝐵 𝑥 − 𝑑̅ ≥ 0.

• Thus, according to Nagumo’s theorem 𝑥 𝐵 𝑥 ≥ −𝑑̅/𝛾} is control invariant.



Example: Input-to-state safety of CBF

𝜃

𝑢

∇𝐵 x 𝑡 : 𝑑 𝑡 ≤ 𝑑̅ = 0.02, 𝛾 = 2.0, −𝑑̅/𝛾 = −0.01
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