
EECS/ME/BioE 106B Homework 3: Path Planning

Spring 2023

Problem 1: Convex Model Predictive Control

In this problem, we’ll develop some theoretical background for model predictive control (MPC),
which allows us to solve path planning and control problems with a single optimization problem.
In particular, we’ll work on analyzing a special case of model predictive control: convex model
predictive control.
In the field of optimization, there are a special class of optimization problems known as convex
optimization problems. These problems have the special property that any local minimum of
the cost function subject to the optimization constraints is also a global minimum!
In this question, we’ll show that a special case of MPC may be formulated as the following
convex optimization problem:

z∗ = arg min
z

zTCz + cT z + k (1)

s.t. Dz + b = 0 (2)

Where C ⪰ 0 is a positive semidefinite matrix (symmetric and all eigenvalues ≥ 0), c is a
vector, and k a scalar. With this convex optimization problem in mind, let’s discuss the MPC
optimization problem. Suppose we have a controllable discrete time system:

x(k + 1) = Ax(k) +Bu(k), x ∈ Rn, u ∈ Rm (3)

Can we devise an optimization problem such that we can drive the system to a desired state xd
optimally? We can formulate the following MPC optimization problem:

x∗, u∗ = arg min
x,u

(xN − xd)
TP (xN − xd)+

N−1∑
k=0

[(xk − xd)
TQ(xk − xd) + uTkRuk]

s.t. xk+1 = Axk +Buk, k = 0, 1, ..., N − 1

x(0) = x0

Where P,Q,R are positive semidefinite matrices (symmetric and all eigenvalues ≥ 0), N is a
positive integer, and x(0) = x0 is the initial condition of the system.
By solving this problem, we can find the optimal sequences of states and inputs x0, ..., xN−1,
u0, ..., uN−1 that take us from our initial condition to our desired state. If we can prove that
this problem is convex, we’ll have shown that any state and input sequence that provides a local
minimum of the cost function will also provide a global minimum of the cost function.
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Questions

In this question, we’ll formulate a model predictive control optimization problem for a linear
system, ẋ = Ax+Bu as the convex optimization problem:1

z∗ = arg min zTCz + cT z + k, s.t. Dz + b = 0 (4)

1. The MPC optimization problem refers to a discrete time system, yet our system is con-
tinuous time! Recall that the general solution to the differential equation ẋ = Ax + Bu
with an initial condition x(0) = x0 is given by the expression:

x(t) = eAtx0 +

∫ t

0
eA(t−τ)Bu(τ)dτ (5)

If we use a sampling time ∆t, and u(t) is constant over the sampling interval [t, t +∆t],
show that we can discretize the system perfectly with no error as:

x(k + 1) = Adx(k) +Bdu(k) (6)

Where Ad = eA∆t and Bd =
∫ ∆t
0 eA(∆t−τ)Bdτ . This form of discretization, where we hold

an input constant over a sampling interval, is known as a zero order hold discretization.
Hint: Examine the general solution for x(t) from t to t+∆t.

2. Let’s now try rewriting MPC as a convex optimization problem. If z is defined:

zT =
[
xT0 xT1 . . . xTN uT0 uT1 . . . uTN−1

]
(7)

Find an expression for a matrix C, a vector c, and a scalar k such that:

zTCz + cT z + k = (xN − xd)
TP (xN − xd)+

N−1∑
k=0

[(xk − xd)
TQ(xk − xd) + uTkRuk] (8)

Then, show that your choice of C is positive semidefinite. Hint: Try using block matrices!

3. When reformulating the optimization constraints, it’ll be useful to have a general solution
for xk. Prove by induction on k that for an initial condition x0, xk is given by the formula:

xk = Akx0 +
k−1∑
i=0

Ak−i−1Bui (9)

Hint: To prove a statement by induction, first show it is true for the base case (k = 1),
then assume it is true for k = p > 1 and show this implies it is true for k = p+ 1.

4. With the discrete time solution in mind, let’s rewrite our optimization constraint in convex
form. If z is defined as above, find expressions for a matrix D and a vector b such that
the constraint:

Dz + b = 0 (10)

Is equivalent to the two original optimization constraints:

xk+1 = Axk +Buk, k = 0, 1, ..., N − 1 (11)

x(0) = x0 (12)

After completing this step, you’ll have shown that the MPC optimization problem above is
actually a convex optimization problem! Hint: Use your answer to the previous question to
form a relationship X = Bx(0)+LU , where x(0) is the initial condition, XT = [xT1 , ..., x

T
N ],

UT = [uT1 , ..., u
T
N−1] are vectors containing the state and input sequences. How can you

get z from X,U?

1Note that this problem is a QP! The extra +k is simply to keep our cost function the same as the original
MPC cost, but we could eliminate it without affecting the optimization solution.
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Problem 2: Planning With Nonlinear Model Predictive Control

In this question, we’ll focus on a more general class of model predictive control: nonlinear
model predictive control (NMPC). As we’ll soon see, our simple convex MPC formulation can
be easily modified to incorporate constraints such as nonlinear dynamics, obstacles, input limits,
and more! Note that in this more complex formulation of MPC, we can no longer in general
make our optimization problem convex.
Let’s think about how we can use nonlinear model predictive control to solve the path planning
and control problem for a turtlebot that navigates around a set of obstacles.
The dynamics of the turtlebot are described by:ẋẏ

ϕ̇

 =

cosϕ 0
sinϕ 0
0 1

[
v
ω

]
(13)

Where x, y are the coordinates of the center of the turtlebot, ϕ is the orientation angle of the
turtlebot, and v, ω are the input velocity and angular velocity to the turtlebot.
Suppose we want to drive our turtlebot from a starting position, [x0, y0] to a final position
[xd, yd], while avoiding a set of O circular obstacles, each of radius ri and center xi, yi. The
following constraint:

(xk − xi)
2 + (yk − yi)

2 ≥ r2i , k = 0, ..., N − 1, i = 1, ..., O (14)

Ensures that the the turtlebot always remains outside of each obstacle at each time step k.
We know that in practice, the motors of a turtlebot have limits to their strength! In MPC, we
may easily account for these limits with the input constraints:

umin ≤ uk ≤ umax, k = 0, 1, ..., N − 1 (15)

Note that the inequality here is applied to each element of the input vector. Take a moment to
notice how flexible the MPC optimiziation problem is in incorporating different constraints on
the system! Using the constraints, we may formulate the following nonlinear MPC optimization
problem for the planning and control of the turtlebot around the obstacles:

x∗, u∗ = arg min
x,u

(xN − xd)
TP (xN − xd)+

N−1∑
k=0

[(xk − xd)
TQ(xk − xd) + uTkRuk] (16)

s.t. xk+1 = f(xk, uk), k = 0, 1, ..., N − 1 (17)

x(0) = x0 (18)

(xk − xi)
2 + (yk − yi)

2 ≥ r2i , k = 0, ..., N − 1, i = 0, ..., O (19)

umin ≤ uk ≤ umax, k = 0, 1, ..., N − 1 (20)

It’s important to note that although our turtlebot system is a continuous time dynamical system,
the model predictive control problem is formulated for discrete time systems! We’ll therefore
have to discretize our dynamics before applying MPC.
As with before, a model predictive controller will solve this optimization problem at each time
step, execute the first input in the solution sequence, re-solve at the next time step, and continue
the process. Note that now, however, our problem will no longer be convex, but will rather be
a general nonlinear optimization problem.
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Questions

In this question, we’ll implement the model predictive controller discussed above using a flex-
ible nonlinear optimization library called CasADi. If you’ve never used CasADi before, we
recommend reviewing the tutorial notebook here before completing this question. Casadi also
has extensive online documentation. If you’d like to complete this portion in an online Colab
notebook environment, please find the notebook here.

Above: Can we use MPC to plan around a set of obstacles to a goal state?

1. Before applying model predictive control, we must discretize the turtlebot dynamics from
ẋ = f(x, u) to x(k) = f(x(k), u(k)). Recall that if we use a sampling interval of ∆t, we
may use Euler discretization to discretize our system as:

x(k + 1) = x(k) + f(x, u)∆t (21)

Go to controller.py and implement the discrete dyn() function.

2. We may now add the constraints to our optimization problem. In controller.py, imple-
ment the functions add input constraint(), add obs constraint(), and add dyn constraint().

3. Now that we’ve declared our optimization problem and variables, we can define our cost
function. Go to controller.py and implement the add cost() function.

4. To speed up the optimization solution time, we can “warm-start” the optimization with
a guess of the solution. One potential guess for the solution is a straight line between
the initial and final positions as a function of time step k. At k = 0, xk should be at x0,
and at k = N , xk should be at xd. In between these states, we should plot out a smooth
straight line as a function of k. Go to controller.py and implement the add warm start()
function using either this or another warm-start guess.

5. Let’s focus on some of the tuneable parameters. Recall that in this problem, we want to
drive the turtlebot to a desired x, y location, and don’t care about the orientation. With
this in mind, explain in words why the following matrix might be a good choice for Q:

Q =

λ1 0 0
0 λ2 0
0 0 0

 , λi ≥ 0 (22)

Hint: Try multiplying out (x− xd)
TQ(x− xd) for arbitrary ϕd.

6. To test your code, run the file run simulation.py. On line 30 of this file, you can select
the value of the horizon, N . Tune the values of Q, R, P andN until the turtlebot smoothly
converges to the goal state. Attach the plots provided by the simulation to your solution.
Hint: Start with diagonal Q,R, P with weights of 1 - remember that these matrices must
be positive semidefinite!
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Problem 3: Kinematic Constraints

Thus far in our study of the dynamics of robotic systems, we have avoided directly treating the
effect of kinematic constraints - constraints that impact the motion - on the dynamics of the
system. In this question, we’ll analyze some nuances of these constraints.
Let’s imagine that we have a physical system, whose dynamics may be described using a vector
of generalized coordinates, q ∈ Rn.

q =

q1...
qn

 ∈ Rn (23)

Recall that in the study of dynamics, generalized coordinates help us describe the positions of
different components of the system.
If we were to take a Lagrangian approach to describing the motion of our system, we would
have to write out n differential equations of the form:

d

dt

(∂L
∂q̇i

)
− ∂L

∂q
= fnc,i, 1 ≤ i ≤ n (24)

Where L = T − V is the Lagrangian of the system and fnci is the set of external, or non-
conservative, forces along the qi direction. How would our dynamics change if we were to impose
constraints on the motion of our system? We may constrain the velocities of our generalized
coordinates, q̇, using a Pfaffian constraint.

Definition 1 Pfaffian Constraint
A Pfaffian constraint imposes a constraint on the velocities of the generalized coordiantes of a
system. A set of k Pfaffian constraints is written:

ωi(q)q̇ = 0, i = 1, 2, ..., k (25)

Where ωi(q) = [ωi1(q), ..., ωin(q)] is a row vector that depends on q.

Pfaffian constraints, which directly constrain the velocities of a system, do not necessarily
directly constrain the positions a system can go to! We can have a constraint on the velocities
of our generalized coordinates but still be able to travel to any position, q. A Pfaffian constraint
which does directly constrain the positions of a system is called an integrable constraint.

Definition 2 Integrable Pfaffian Constraint
A Pfaffian constraint ωi(q)q̇ = 0 on the velocities q̇ of a system is said to be integrable if there
exists a constraint hi(q), purely on the positions q, such that:

ωi(q)q̇ = 0 → hi(q) = 0 (26)

hi(q) = 0 → ωi(q)q̇ = 0 (27)

Thus, a Pfaffian constraint is integrable if it is identical to a constraint purely on the positions
of the generalized coordinates. If every constraint in a set of k Pfaffian constraints ωi(q)q̇ = 0 is
integrable, the set of constraints is said to be holonomic. If none of the constrains are integrable,
the set of constraints is said to be completely nonholonomic. As it happens, determining if a
Pfaffian constraint is holonomic or nonholonomic is an extremely nontrivial process!
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Questions

1. Let’s begin by analyzing the effect of integrable constraints on physical systems. Suppose
we have a system with a vector of generalized coordinates:

q = [q1, q2, ..., qn]
T ∈ Rn (28)

We know from Lagrangian dynamics that the second order differential equations of motion
of the system may be found by computing:

d

dt

(∂L
∂q̇i

)
− ∂L

∂qi
= fnc,i, 1 ≤ i ≤ n (29)

Imagine that we solve for the second order ODEs of n − 1 generalized coordinates using
Lagrange’s equations, where we choose q1, ...qn−1 from the set of generalized coordinates
without loss of generality.

q̈1, q̈2, ..., q̈n−1 (30)

Suppose we add a single holonomic Pfaffian constraint, ω(q)q̇ = 0, to the system. Assum-
ing the constraint is a function of qn, show that we can use the constraint to find q̈n as a
function of q1, q2, ..., qn−1 and their first and second time derivatives.
This proves that an integrable constraint reduces the number of G.C.s we need to describe
a system, as we don’t need to directly apply Lagrange’s equations to find q̈n. Hint: If the
constraint is holonomic, is it equivalent to an algebraic constraint h(q) = 0?

2. Previously, we showed that integrable constraints reduce the number of generalized coor-
dinates we need to describe the system’s motion! Using this observation, we develop the
following criteria for intuitively identifying holonomic and nonholonomic constraints:

(a) Holonomic: The constraint restricts the values of G.C. positions we can reach.

(b) Nonholonomic: The constraint doesn’t effect the G.C. positions we can reach.

Using this criteria, explain why the constraint on the turtlebot’s motion is nonholonomic
while the constraint on the rollercoaster’s motion is holonomic.

You may assume the rollercoaster travels along a rigid path.

3. A turtlebot moves with the constraint that it cannot slide side to side. This means that
there is no component of velocity perpendicular to the heading of the robot. Show that
this constraint may be expressed in Pfaffian form as:

ω(q)q̇ =
[
− sinϕ cosϕ 0

] ẋẏ
ϕ̇

 = 0 (31)

This is an example of a nonholonomic constraint!
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Problem 4: Nonholonomic Controllability

We know that if we solve for the Lagrangian dynamics of a system in terms of its generalized
coordiantes, q, we get a system of second order differential equations of the form:

Mq̈ + Cq̇ +N = Γ (32)

Once we have these equations, we can design feedback controllers in terms of q to drive the
system to some desired state. Can we exploit the structure of constraints to find another way
of controlling the system? Suppose we have a set of k independent nonholonomic constraints:

ωi(q)q̇ = 0, 1 ≤ i ≤ k (33)

If we apply k independent constraints to an n dimensional system, there are n− k independent
directions that q̇ can point in! This means that the null space of ω(q)i is n−k dimensional. We
may therefore define a basis for the null space:

g1(q), g2(q), ..., gm(q), m = n− k (34)

Such that ωi(q)gj(q) = 0 for 1 ≤ i ≤ k, 1 ≤ j ≤ m. Note that each gj is a vector field that
expresses a direction q̇ is allowed to point in! This means that every linear combination:

u1g1(q) + u2g2(q) + ...+ umgm(q), ui ∈ R (35)

Must also satisfy the constraint, where ui ∈ R is arbitrary. Thus, if:

q̇ = u1g1(q) + u2g2(q) + ...+ umgm(q) (36)

q̇ must satisfy the Pfaffian constraint! Since ui are arbitrary, this system is a control system in
terms of inputs u1, ..., um that respects the kinematic constraints of the system. We may use
this control system just like any other to move our generalized coordinates to a desired position.
How do we know if we can use the inputs to drive the system to any position q? The answer to
this question lies in nonlinear controllability, which we will develop with the help of a few tools.

Definition 3 Lie Bracket
The Lie bracket of two vector fields f(q), g(q) is defined:

[f, g](q) =
∂g

∂q
f(q)− ∂f

∂q
g(q) (37)

The Lie bracket measures whether flows of equal time along f and g commute.

Definition 4 Lie Algebra
The Lie algebra of a set of vector fields {g1, g2}, denoted L(g1, g2), is the span of all linear
combinations of g1, g2, their Lie brackets, and higher order Lie brackets:

g1, g2, [g1, g2], [g1, [g1, g2]], [g2, [g1, g2]], ... (38)

For a set of m vector fields, g1, ..., gm, the Lie algebra L(g1, ..., gm) is similarly defined by taking
the span of the vector fields and their Lie brackets with each other.

Let’s learn how to use Lie brackets and algebras to study the controllability of constrained
nonlinear systems!
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Questions

1. Let’s return to the turtlebot system. Recall that previously, we identified that the turtle-
bot has the following nonholonomic constraint on its dynamics:[

− sinϕ cosϕ 0
]
q̇ = 0 (39)

Since the turtlebot has a single constraint and three generalized coordinates (x, y, ϕ), there
are two vector fields g1, g2 that form a basis for the null space of this constraint. Show:

g1(q) =
[
cosϕ sinϕ 0

]T
, g2(q) =

[
0 0 1

]T
(40)

Form a basis for the null space of this constraint. Then, prove that all q̇ of the following
form satisfy the constraint ω(q)q̇ = 0, where u1, u2 ∈ R:

q̇ =

cosϕsinϕ
0

u1 +

00
1

u2 (41)

2. We now have the turtlebot control system q̇ = g1(q)u1 + g2(q)u2, which uses two linearly
independent vector fields, g1(q), g2(q). Calculate the Lie bracket of these two vector fields:

g3 = [g1, g2] (42)

3. Now, we have three vector fields, g1, g2, g3. Prove g1, g2, g3 form a basis for R3 by showing:

det

 | | |
g1 g2 g3
| | |

 ̸= 0, ∀q ∈ R3 (43)

4. We want to devise a method to determine if we can steer the turtlebot to any state qd from
any starting state q0 while respecting the constraint. Consider the following theorem:2

Theorem 1 Small Time Local Controllability
A system is small time locally controllable at a point q0 if the set of states the system can
reach in finite time starting from q0 forms a ball around q0.
If the dimension of L(g1, ..., gm) is equal to the dimension of q, and the input vector
[u1, ..., um] can be chosen to be any vector in Rm, then the system:

q̇ = g1(q)u1 + ...+ gm(q)um (44)

Is small time locally controllable.

Using this theorem, prove that the turtlebot is a small time locally controllable system.
You may assume the inputs u1, u2 to the turtlebot can be arbitrary. Hint: Recall that the
Lie Algebra of g1, g2, denoted L(g1, g2), is the span of g1, g2, and their Lie brackets. Try
using your answer to the previous part to identify its dimension!

2The statement that the input may be chosen to be any vector in Rm may be reduced to the less restrictive
condition that the positive span of the inputs is Rm.
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