
EECS/ME/BioE 106B Homework 2: Controls

Spring 2023

Problem 1: Linear Lyapunov Stability

In this question, we’ll perform an exploratory analysis of the concept of Lyapunov stability
through the lens of linear systems. Note that in our analysis, we’ll assume the equilibrium
point of interest is xe = 0. If xe is nonzero, we can perform a simple change of coordinates
x′ = x− xe to make the equilibrium point at xe = 0.

Definition 1 Lyapunov Stability
The equilibrium point xe = 0 ∈ Rn of the system ẋ = f(x, t), x(t0) = x0, x ∈ Rn is stable in
the sense of Lyapunov (SISL) if for all ε > 0, there exists a δ > 0 such that if:

||x0|| < δ (1)

It is guaranteed that for all t > t0:

||x(t)|| < ε (2)

In words, this definition tells us that an equilibrium point is stable if starting close to the
equilibrium point (some distance δ away) means that we’ll stay close to the equilibrium point
(within some distance ε) for all time. If a point is stable, we’ll always be able to find a δ for
every ε to satisfy this condition.
Although this definition is important for understanding what stability means in a mathematical
sense, it’s challenging to apply directly to study whether equilibrium points are stable or not. To
see if an equilibrium point is Lyapunov stable, we commonly use the basic theorem of Lyapunov.

Theorem 1 Basic Theorem of Lyapunov
If there exists a locally positive definite function V (x, t) such that V̇ (x, t) ≤ 0 locally in x and
for all t along the trajectories of the system, the origin of the system ẋ = f(x, t) is locally stable
in the sense of Lyapunov.

This powerful theorem states that if we can find a function V (x, t), known as a Lyapunov
function, that is positive definite for some region around the origin and decreases for all time
within that region, the origin of the system is locally stable. Why is this?
If V is locally positive definite around the origin, its only minimum is at the origin, x = 0. If
V (x, t) decreases as the system evolves, x will never move away from the origin. Thus, x will
remain close to the origin even though it didn’t necessarily start there!
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Questions

In this question, we’ll work towards finding conditions for the Lyapunov stability of:

ẋ = Ax, x ∈ Rn (3)

1. First, we need to identify a Lyapunov function V (x, t). Consider the function:

V (x) = xTPx, x ∈ Rn, P ∈ Rn×n (4)

Where P is a positive definite matrix, denoted P ≻ 0. If P ≻ 0, we know a few important
things: P is symmetric, its eigenvalues are all > 0, and its eigenvectors are all orthogonal.
Let T be a matrix whose columns are the eigenvectors of P ≻ 0. If z = T−1x, show that:

zTDz = xTPx (5)

Where D is a diagonal matrix with the eigenvalues of P along the diagonal. Hint: If the
columns of T are orthogonal, then T−1 = T T .

2. Now, we need to show our candidate Lyapunov function V (x) = xTPx is positive definite!
Formally, a function V (x) is positive definite if there exists a strictly increasing scalar
function α : R+ → R, α(0) = 0, limp→∞ α(p) = ∞, such that:

V (0) = 0 and V (x) ≥ α(||x||) (6)

Prove that for a matrix P ≻ 0, the function:

V (x) = xTPx (7)

Is positive definite. Hint: use your answer to part 1.

3. Prove that along any trajectory of the system ẋ = Ax, the time derivative of the Lyapunov
function V (x) = xTPx for positive definite P ≻ 0 is equal to the following:

V̇ (x) = xT (ATP + PA)x (8)

Hint: To take the derivative along a trajectory, substitute the constraint ẋ = Ax for ẋ.

4. Now that we have an expression for the derivative of the Lyapunov function, we have to
ensure that our P matrix is chosen such that V̇ is always negative!
Prove that if we can find a positive definite matrix P that solves the equation:

ATP + PA = −Q (9)

Where Q is any positive definite matrix, we can ensure the origin of the system is stable
in the sense of Lyapunov. This equation is known as the Lyapunov equation. Hints: How
can we use xTQx to our advantage?

5. In the above, we only proved a weak form of Lyapunov stability. Does a stronger form of
stability hold? An equilibrium point xe = 0 of ẋ = f(x, t) is globally exponentially stable
if there exists a V (x, t) such that for all x ∈ Rn, there exist αi > 0 ∈ R such that:

α1||x||2 ≤ V (x, t) ≤ α2||x||2 (10)

V̇ ≤ −α3||x||2 (11)∣∣∣∣∣∣∂V
∂x

(x, t)
∣∣∣∣∣∣ ≤ α4||x|| (12)

Prove that if we can find a matrix P ≻ 0 that satisfies the Lyapunov equation, xe = 0 is
a globally exponentially stable equilibrium point of ẋ = Ax. Hint: the gradient of xTPx
is calculated ∂(xTPx)/∂x = (P T + P )x. How can you use an induced norm?
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Problem 2: The Indirect Method of Lyapunov

Finding Lyapunov functions for general nonlinear systems is a notoriously difficult process! If
we aren’t dealing with a physical system where we can use energy as a potential Lyapunov
function, what can we do? Instead of directly finding a Lyapunov function and taking its time
derivative, we can use the indirect method of Lyapunov, stated below:

Theorem 2 Indirect Method of Lyapunov (Stability by Linearization)
If the Jacobian linearization around the origin of the system ẋ = f(x, t), defined:

ẋ = A(t)x, A(t) =
∂f

∂x

∣∣∣
x=0

(13)

Exists, is well-behaved around the origin, and has bounded A(t), A(t) may be used to determine
the local stability of the origin. If all eigenvalues of A(t) have negative real components, xe = 0
is a locally uniformly asymptotically stable equilibrium point of ẋ = f(x, t).

Thus, if the Jacobian linearization of a system exists and is well behaved,1 we can use the
eigenvalues of the linearized system to make conclusions about the stability of the nonlinear
system! The indirect method of Lyapunov thus allows us to forgo the need for a Lyapunov
function and directly check for stability using eigenvalues.

Questions

1. A simple pendulum with mass m, length l, and angle θ has a frictional force −βθ̇, where
β > 0 ∈ R, applied to it at its point of rotation.

The dynamics of this pendulum may be written in state space as:[
ẋ1
ẋ2

]
=

[
x2

−g
l sinx1 − βx2

]
, x =

[
θ

θ̇

]
(14)

The Jacobian linearization of the system about its equilibrium point x = [0, 0]T is:[
ẋ1
ẋ2

]
≈

[
0 1
−g

l −β

] [
x1
x2

]
(15)

Show that the eigenvalues of the Jacobian linearization have Re(λi) < 0, and conclude
that x = [0, 0]T is a locally uniformly asymptotically stable equilibrium point using the
indirect method of Lyapunov.

2. Why does the indirect method of Lyapunov only allow us to conclude local stability?
Provide a brief worded response.

1Well-behaved refers to the uniform convergence of the Jacobian linearization to f(x, t) as x → xe. We won’t
need to worry about this condition here!
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Problem 3: Control Lyapunov Functions

In this question, we’ll explore a fascinating application of Lyapunov functions in the development
of optimal feedback controllers for nonlinear systems. Let’s first review some basic concepts from
optimization.
In an optimization problem, we typically seek to minimize a cost function subject to some
optimization constraints. For example, consider the problem below:

c =min
x∈Rn

f(x) (cost function) (16)

s.t. Ax ≤ b (optimization constraint) (17)

This notation specifies that we want to find the minimum, c, of a function f(x), where x is a
vector in Rn subject to the constraint that Ax ≤ b. In this problem, x, the variable that we
optimize over, is called a decision variable. It is an unknown in the optimization problem.

x∗ =arg min
x∈Rn

f(x) (cost function) (18)

s.t. Ax ≤ b (optimization constraint) (19)

If we were to write “arg min” instead of simply “min,” instead of solving for the smallest values
of f , we would seek x∗, the value of our decision variable x that minimizes f . In other words,
we search for the “argument” that minimizes f .
What types of optimization problems are there? Do certain types of problems have simpler
solutions than others? Consider the following optimization problem:

x∗ =arg min
x∈Rn

xTQx+ cTx (20)

s.t. Ax ≤ b (21)

Where Q ∈ Rn×n is a positive semidefinite matrix (symmetric, all eigenvalues ≥ 0) and c ∈ Rn.
This type of optimization problem, known as a quadratic program (QP), has a global minimum
and may be solved efficiently by a computer! Quadratic programs are commonly used in optimal
control, the study of applying optimization techniques to find the best control input to a system.
Imagine that we have a control-affine nonlinear system, of the form:

ẋ = f(x) + g(x)u, x ∈ Rn, u ∈ Rm (22)

Suppose this system has a Lyapunov function V (x) that satisfies some special conditions we’ll
discuss shortly. Consider the optimization problem:

u∗ =arg min
u∈Rn

uTQu (23)

s.t. LfV + LgV u ≤ −γ(V (x)); (24)

Where γ : R+ → R is a strictly increasing function with γ(0) = 0, Q is a positive semidefinite
matrix, and LfV and LgV are the Lie derivatives of the system, calculated:

LfV =
∂V

∂x
f(x), LgV =

∂V

∂x
g(x) (25)

Given the right conditions, this optimization problem, which gives a controller known as a
control Lyapunov function quadratic program (CLF-QP), allows for the asymptotic stabilization
of a system! Let’s learn about its properties!2

2CLF-QPs may also be used for trajectory tracking, not only stabilization! Your Lyapunov function should
simply be a function of tracking error instead of state in this case.
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Questions

1. Let’s start out by analyzing the setup of the optimization problem. Identify the decision
variables, the cost function, and the constraints of the optimization problem. Then, show
that the CLF-QP is a quadratic program by rewriting it in standard QP form:

x∗ =arg min
x∈Rn

xTQx+ cTx (26)

s.t. Ax ≤ b (27)

2. Let’s take a moment to think about the cost function of the CLF-QP controller:

cost = uTQu (28)

Why is this cost something we want to minimize? Provide a brief worded response with
mathematical justification where necessary.

3. Show that the time derivative of the Lyapunov function V (x) along the trajectories of the
control-affine system ẋ = f(x) + g(x)u may be expressed:

V̇ (x, u) = LfV + LgV u (29)

4. Prove that if the optimization constraint:

LfV + LgV u ≤ −γ(V (x)) (30)

Is always satisfied, where γ(y) : R+ → R, y ∈ R is an always-increasing scalar function
such that γ(0) = 0,3 the CLF-QP controller will make the equilibrium point of the system
stable in the sense of Lyapunov.4 Hint: Consider the conditions required of a Lyapunov
function for a stable equilibrium point.

5. Thus far, we haven’t discussed the feasibility of this optimization problem. Is this opti-
mization problem something we can always solve given any control-affine system with a
valid Lyapunov function? Not quite! One of the conditions we require is that V (x) be a
valid control Lyapunov function.
A control Lyapunov function is a positive definite function V (x) such that:

inf
u∈U

{LfV + LgV u} ≤ −γ(V (x)) (31)

Where U is the set of possible inputs for the system and infu∈U is the largest lower bound
of the set {LfV + LgV u} over all possible values of u. Provide a brief worded response
explaining why this is a necessary condition for the CLF-QP controller to stabilize a
system. Hint: Think about what happens if we can’t satisfy this condition - what might go
wrong with the convergence of our Lyapunov function?

6. Let’s think about the effect of γ(y) on the convergence of the system to its equilibrium
point. Consider a linear scalar function γ(y) of the form:

γ(y) = βy, β ∈ R (32)

Assuming the optimization constraint is always satisfied and that V̇ (x, u), is a smooth
function of x and u, find a function that is an upper bound on the value of V (t) given
an initial condition x(t0) = x0. Comment on the effect of β on the tightness of the upper
bound. Hint: use the optimization constraint to form a bound. Can you solve the ODE?

3γ is known as a class-K function.
4Note: The CLF-QP controller ensures a stronger form of Lyapunov stability than what we ask you to show

here - for the sake of simplicity, we only ask you to prove a weaker form of Lyapunov stability.
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Problem 4: MIMO Feedback Linearization & Dynamic Extension

Let’s discuss how feedback linearization generalizes to the case of multi input multi output, or
MIMO, systems. In particular, we’ll focus on the a class of MIMO systems known as “square”
systems, where the number of inputs is the same as the number of outputs. These systems are
of the form:

ẋ = f(x) + g(x)u, x ∈ Rn, u ∈ Rp (33)

y = h(x), y ∈ Rp (34)

Note that instead of being a single quantity, the output, y, is a vector! This output vector could
be filled with variables of interest from the state vector, for example the (x, y) coordinates of
the center of mass of a car!
As it happens, feedback linearization for many5 MIMO systems is quite similar to that for SISO
systems. Let’s begin by taking the time derivative of the jth output, yj :

ẏj = Lfhj(x) +

p∑
i=1

Lgihj(x)ui (35)

Since we now have p inputs, we must sum over the lie derivatives that are associated with each
input ui to the system. As with before, we continue taking derivatives of yj until at least one
of the Lgihj(x) ̸= 0 - this allows for the presence of an input variable! The smallest derivative
at which this happens is called γj , the relative degree of output yj . We can calculate the γj
derivative of yj as follows:

y
(γj)
j =

dγjyj
dtγj

= L
γj
f hj(x) +

p∑
i=1

LgiL
γj−1
f hj(x)ui (36)

If the relative degree of each yj is well defined, we can write the derivatives of each output as
follows: 

y
(γ1)
1
...

y
(γp)
p

 =

L
γ1
f h1(x)

...
L
γp
f hp(x)

+


Lg1L

γ1−1
f h1(x) . . . LgpL

γ1−1
f h1(x)

...
. . .

...

Lg1L
γp−1
f hp(x) . . . LgpL

γ1−1
f hp(x)


u1...
up

 (37)

Where the p × p matrix in the expression above is referred to as A(x). If A(x) is invertible,
we find that under certain conditions, we can find an input u that input-output linearizes the
system!
In this question, we’ll discuss a technique called dynamic extension, which is used when A is
non-invertible, and apply it to develop a controller for a turtlebot!

Questions

The dynamics of a turtlebot are described by the following equations:ẋ1ẋ2
ẋ3

 =

cosx3 0
sinx3 0
0 1

[
u1
u2

]
, y =

[
x1
x2

]
(38)

Where x1 is the x coordinate of the turtlebot, y1 is the y coordinate of the turtlebot, x3 is
the orientation ϕ of the turtlebot, and u1 and u2 are speed and turning rate respectively. This
model is known as the unicycle model.

5Here, we focus on the class of MIMO systems linearizable by static state feedback! The conditions for
linearizability are out of scope of this course, but are discussed in ME C237/EE C222, Nonlinear Systems.
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1. Recall that γj is the first time derivative of y where at least one input variable appears.
For the turtlebot system described above, show that γ1 = γ2 = 1, and that the derivatives
of y are calculated: [

ẏ1
ẏ2

]
=

[
cosx3 0
sinx3 0

] [
u1
u2

]
= A(x)u (39)

2. To find a feedback linearizing input, we’d like to take the inverse of A(x), but A(x) is
not invertible! To get around this, we’ll use a technique called dynamic extension. First,
instead of directly controlling the input u1, we’ll control its derivative, w1 = u̇1. Thus, we
form a new input vector, w = [w1, w2]

T = [u̇1, u2]
T .

Now that we’re using w1 = u̇1, we need some way to keep track of the value of u1 itself!
We can do this by adding u1 as a virtual state to the system, and form a new state vector:

x̃ =
[
x1 x2 x3 u1

]T
(40)

Using the extended state vector x̃ and input vector w, show that the dynamics of the
system may be rewritten:

ẋ1
ẋ2
ẋ3
u̇1

 =


u1 cosx3
u1 sinx3

0
0

+


0 0
0 0
0 1
1 0

[
w1

w2

]
= f(x̃) + g(x̃)w (41)

3. Now that we have an extended system, let’s see if we can come up with a feedback
linearizing control law! If the outputs are x1 = y1, x2 = y2, show that for the extended
system, γ1 = γ2 = 2. Then, show that the relationship:[

ÿ1
ÿ2

]
=

[
cosx3 −u1 sinx3
sinx3 u1 cosx3

] [
w1

w2

]
= A′(x̃)w (42)

Holds between the input w and output y. For what values of u1 will A
′(x̃) not be invertible?

4. Assuming A′(x̃) is invertible, find an expression for w such that when w is applied to the
nonlinear system above, the following linear system governs the dynamics:

ẏ1
ẏ2
ÿ1
ÿ2

 =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0



y1
y2
ẏ1
ẏ2

+


0 0
0 0
1 0
0 1

 v (43)

Where v ∈ R2 is an arbitrary vector. We’ve now successfully linearized the dynamics of
the turtlebot! Hint: start by finding a control law in terms of the second derivatives of y.

5. Let z = [y1, y2, ẏ1, ẏ2]
T be the state vector of the linearized system above. Show that

kij ∈ R may be chosen such that the control law:

v = −Kz, K =

[
k11 k12 k13 k14
k21 k22 k23 k24

]
∈ R2×4 (44)

Stabilizes the linearized system above around the origin, z = 0. This choice of input
is known as state feedback. Hint: Substitute in v and reduce the system to the form
ż = Pz, P ∈ Rn×n. Can we choose K to control the eigenvalues of P?
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Problem 5: Implementing Control Lyapunov Functions

Note: This question requires the Python optimization library CasADi. If you’re unable to install
CasADi, please use the provided Google Colab notebook.
In this question, we’ll implement a type of control Lyapunov function known as an exponentially
stabilizing control Lyapunov function (ES-CLF). Note that you should complete problem 3 on
the theory of control Lyapunov functions before attempting this question - problem 3 provides
much of the theory we’ll need here!
In this question, we’ll extend the theory of control Lyapunov functions from a controller that
stabilizes a system about its equilibrium point to a controller that helps a system track a
trajectory. The system we’ll use is the planar quadrotor, which is constrained to travel in the
y − z plane.

To design a controller for this system, we may treat the rotational and translational dynamics
separately. The first step in the design of a tracking controller for a planar quadrotor is to
abstract away the rotational dynamics & control of the system, and to treat the quadrotor as a
point mass with a force vector input that travels in the y − z plane.

For now, we’ll ignore the effects of gravity on the point mass to simplify our Lyapunov function.
With this in mind, the simple point mass system has dynamics described by the equation:

m

ẍÿ
z̈

 =

f1f2
f3

 (45)

mq̈ = f (46)

Where m is the mass of the quadrotor. Note that since the system is planar, we set f1 = 0.
To track a desired trajectory (qd(t), q̇d(t)), we can use a Lyapunov function defined around the

8

https://colab.research.google.com/drive/14QCc5Lmnd6qPyiIIVDPSnwsR_geZ3apD?usp=sharing


error of the system! Following Wu and Sreenath’s approach (2016)6, we define:

V =
1

2
m||q̇ − q̇d||2 +

α

2
||q − qd||2 + ε(q − qd)

T (q̇ − q̇d) (47)

Where α > 0 and ε > 0 are constants set to make V quadratic in tracking error. Instead of
driving the state of the system to an equilibrium point, like an ordinary Lyapunov function
might, this Lyapunov function will drive the error of the system to zero!
In this question, you’ll implement a CLF-QP controller in Python to enable a quadrotor to stably
track trajectories. We’re going to use a special type of CLF known as an exponentially stabilizing
control Lyapunov function (ES-CLF). The ES-CLF optimization problem is formulated:

u∗ =arg min
u∈Rn

uTQu (48)

s.t. V̇ ≤ −γV (49)

Where Q ⪰ 0 is a positive semidefinite matrix. An exponentially stabilizing CLF-QP controller
is one that uses a linear function g(x) = γx, where γ ∈ R is a positive constant, for its strictly
increasing function in the optimization constraint. Note that in the above, we simply opted
to write the time derivative of V without using Lie derivative notation. Let’s get started on
writing our controller!

Questions

1. As can be observed in the optimization problem above, we must solve for the time deriva-
tive of the Lyapunov function. If we define position error ex = q − qd and velocity error
ev = q̇ − q̇d, where qd, q̇d are desired position and velocity, the Lyapunov function is:

V ([q, q̇]) =
1

2
meTv ev +

α

2
eTx ex + εeTx ev (50)

Recalling that the dynamics of the simple particle system are:

mq̈ = f (51)

Show that the time derivative, V̇ (x) along the trajectories of the simple particle system
is expressed:

V̇ = (
1

m
f − q̈d)

T (mev + εex) + αeTv ex + εeTv ev (52)

2. Provide a brief worded explanation as to why the final force vector input to the quadrotor
should be:

fin = u∗ +mge3 (53)

Where m is the mass of the quadrotor, g is the gravitational constant, e3 = [0, 0, 1]T , and
u∗ is the solution to the CLF-QP optimization problem for the system above.

3. Go to line 101 in the file lyapunov.py, and fill in the functions evalLyapunov() and
evalLyapunovDerivs().

4. Go to line 30 in the file run simulation.py and select the value of gamma so your
quadrotor smoothly tracks the desired trajectory - this will take a little bit of tuning!

5. Test your controller by running the file run simulation.py. The optimization code has
been implemented for you using a library called CasADi, which we will introduce in
homework 3. Attach the plots titled “Evolution of States in Time” and “Evolution of
Inputs in Time” to your solution. Note: The drone has sensors with zero mean Gaussian
noise, so you should see some noisy inputs!

6Safety-Critical Control of a 3D Quadrotor with Range-Limited Sensing, DSCC 2016
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