
EECS/ME/BioE 106B Homework 6: Optimal Control & RL

Spring 2023

Note: This assignment has a programming component in a Colab Notebook.

Problem 1: The Linear Quadratic Regulator

Imagine we have a discrete time system with state xk and input uk of the form:

xk+1 = f(xk, uk) (1)

Dynamic programming is a technique that helps us find an optimal sequence of inputs:

u0, u1, ..., uN−1 (2)

That allow our system to behave in an optimal manner for N timesteps. Let’s discuss how the
process of dynamic programming works. Consider a cost function of the form:

J = Lf (xN) +
N−1∑
k=0

L(xk, uk) (3)

This cost function, where Lf (xN) is the terminal cost and L(xk, uk) is the stage cost, tells us
about the total cost associated with all N timesteps and all N − 1 inputs. Now, let’s imagine
that we’ve already taken a few actions, and are now at step i. The optimal cost to go from step
i is defined to be the optimal cost remaining from step i to the final step N . This is computed:

Jo
i = min

ui,...,uN−1

[Lf (xN) +
N−1∑
k=i

L(xk, uk)] (4)

This tells us the minimum remaining cost. The recursive Bellman equation allows us to solve
for the optimal control input ui at step i using the optimal cost to go Jo

i . It tells us:

Jo
i = min

ui

[L(xi, ui) + Jo
i+1(xi+1)] (5)

Where Jo
i+1 is the optimal cost to go starting from the next state, xi+1. By applying the

Bellman equation recursively, starting from Jo
N = Lf (xN) and working our way backwards, we

can identify the entire optimal sequence of inputs u0, ..., uN−1. Let’s apply this procedure to
solve a famous problem in optimal control. Consider the linear discrete time system:

xk+1 = Axk +Buk (6)

Suppose we’d like to stabilize the state vector of this system to the origin in some optimal way.
One way of achieving this is by finding an input uk that minimizes the cost function:

J = xTNQfxN +
N−1∑
k=0

(xTkQxk + uTkRuk) (7)

Where Qf , Q ⪰ 0, R ≻ 0 are positive definite or semidefinite matrices. By minimizing this cost,
we’ll find an expression for a small control input uk that brings us close to xk = 0, our desired
state! We perform this optimization over a horizon of N steps. Let’s apply the principle of
dynamic programming to find the optimal input ui for an arbitrary time step i in the horizon.
The solution to this problem gives us an optimal controller known as a linear quadratic regulator.

1

https://colab.research.google.com/drive/18hxcaPqyrkvlSNHbh0ZgHiCykbLHPXWL?usp=sharing

Questions

In this question, we’ll consider the system proposed above. Our system has the linear discrete
time dynamics xk+1 = Axk +Buk and a cost function:

J = xTNQfxN +

N−1∑
k=0

(xTkQxk + uTkRuk) (8)

1. We define the optimal cost to go to be the remaining optimal cost from an arbitrary step i
in the horizon to our final step. Provide a brief worded explanation as to why the optimal
cost to go from step i to step N may be expressed:

Jo
i = min

ui,...,uN−1

[xTNQfxN +
N−1∑
k=i

(xTkQxk + uTkRuk)] (9)

Then, identify the terminal cost Lf (xN) and the stage cost L(xk, uk) in the cost function.

2. Using the optimal cost to go formula from above, we know that the optimal cost to go at
state N , Jo

N , is computed:

Jo
N = xTNQfxN (10)

By applying the Bellman equation, we can prove that Jo
k , the optimal cost to go from an

arbitrary step k, is computed with an expression of a similar form:1

Jo
k = xTk Pkxk (11)

Where Pk ⪰ 0 is a positive semidefinite matrix that depends on k. Apply this formula for
the optimal cost to go to the Bellman equation:

Jo
i = min

ui

[L(xi, ui) + Jo
i+1(xi+1)] (12)

To show that Jo
i may be calculated:

Jo
i = min

ui

[xTi Qxi + uTi Rui + (Axi +Bui)
TPi+1(Axi +Bui)] (13)

3. Using this formula for optimal cost to go, show that the optimal input ui is:

ui = −(R+BTPi+1B)−1BTPi+1Axi (14)

This input forms the famous linear quadratic regulator (LQR) controller! Notice how
the controller is simply a state feedback controller! Hint: Use the following formulas for
partial derivatives: ∂

∂x(x
TMy) = My, ∂

∂y (x
TMy) = MTx. Are Q,Pi+1, R symmetric?

4. Let’s analyze the Pk matrix in further detail. First, using your input ui from the previous
question, show that the optimal cost to go at step i may be computed:

Jo
i = xTi (A

TPi+1A+Q−ATPi+1B(R+BTPi+1B)−1BTPi+1A)xi (15)

5. We now have two expressions for Jo
i . Let’s use them to identify how Pi changes with i.

Using our assumption that Jo
i = xTi Pixi and your answer to the previous question, show

that Pi is determined by the following equation:

Pi = ATPi+1A+Q−ATPi+1B(R+BTPi+1B)−1BTPi+1A (16)

This is a special type of discrete time matrix equation called a Riccati equation. We may
determine Pi for any i by iterating the Riccati equation backwards from PN = Qf .

6. Go to the provided notebook (linked at the top of the assignment) and implement the
LQR module. Attach the plots generated by the code to your solution.

1This may be formally proven by induction on k.

2

Problem 2: Concepts in Deep Q-Learning

Dynamic programming gives us the exact and optimal solution to multi-stage decision processes.
In addition to working in the case where the system is deterministic, dynamic programming
can be extended to the case where the system is stochastic (noisy).
When we lack information about our environment and system, however, we must make approx-
imations before applying the principles of dynamic programming! Reinforcement learning (RL)
helps us find approximate solutions to these optimal control problems in the case where we have
limited information about our system. In RL, we’ll assume we only have access to the following:

1. State Estimation: Information about where our system is currently located.

2. Reward: Information about how good the current state and input to our system is.

Using just this knowledge, how can we get our system to behave optimally? Before answering
this question, let’s introduce some basic RL terminology. Firstly, instead of referring to a state
at time t as xt, the field of RL uses st by convention. Similarly, instead of using ut for an input,
we use the letter at in RL, and refer to inputs as actions.
Furthermore, instead of modeling our system with an explicit model of the form xk+1 =
f(xk, uk, wk), we’ll model our system with a probability distribution that tells us the proba-
bility of landing in a new state st+1 given we started at a state st and took an action at:

p(st+1|st, at) (17)

Associated with each pair of state and action, (st, at), we have a reward, R(st, at). This reward
tells us how good a particular state-action pair is. To find the best action at to take given that
we’re in a state st, we define a control policy, which is a closed loop feedback controller. This
policy is conventionally denoted by the letter π:

at = π(st) (18)

Where π represents the policy function returning our input. Using this terminology, we may
frame our goal in a general reinforcement learning problem. We’d like to find a policy π∗(s)
that maximizes the expected total reward over N steps:

π∗(s) = arg max
π

E
[N∑
t=0

γtR(st, π(st))
]

(19)

Where γ ∈ (0, 1] is a constant called the discount factor, used to prioritize the rewards earlier in
time over those that come later. Note that if we choose γ < 1, we can take the limit of this cost
function as N → ∞ to find an optimal policy for all time. How can we solve this optimization
problem in practice?
Q-learning is a technique in reinforcement learning commonly used to solve this optimization
problem. In Q-learning, we wish to find a special function called a Q-function, which tells us
about the quality of a particular state-action pair. The Q-function:

Q(s, a) (20)

Returns the total sum of rewards starting from a state s, taking a first action a, and following
an optimal policy π after taking the first action a. We may prove that the optimal Q-function,
Q∗(s, a), must satisfy the following equation at each state-action pair (st, at) if the action at is
provided by an optimal policy:

E[rt + γmax
a′

Q∗(st+1, a
′)−Q∗(st, at)] = 0 (21)

Where rt is the reward at time t and γ is the discount factor. If we can identify this optimal
Q∗(st, at) function, we’ll be able to solve for an optimal control policy at = π∗(st) at each value
of st. Let’s discuss a method of determining this optimal Q-function from data!

3

Questions

These questions provide a conceptual overview of the processes underlying deep Q-learning.

1. Imagine that we have a data set S consisting of n pairs of (x, y) points, and that we’d like
to fit the following quadratic function to the data set:

fθ(x) = θ1x
2 + θ2x+ θ3 (22)

To fit this function to the data, we must find the optimal value of θ = [θ1, θ2, θ3] such that
our “parameterized fit function,” fθ(x), closely matches the data. Provide a brief worded
explanation as to why solving the following optimization problem:

θ∗ = arg min
θ

1

n

∑
(xi,yi)∈S

(fθ(xi)− yi)
2 (23)

Where n is the number of data points in S, would allow us to identify the value of θ∗ that
makes fθ(x) fit the data. Note that we perform this sum over all pairs of collected (xi, yi)
data in our set, S. The function we minimize here is called an l2 loss function!

2. A popular technique for solving minimization problems over large sets of data is called
gradient descent. Go to the provided notebook and implement the module on gradient
descent in Q-learning. Attach the plots generated by the code to your solution.

3. Suppose that we can’t find a simple function to fit our data well, and that we’d like a more
expressive model. We can use a neural network to fit a function fθ(x) to complex data!
We can visualize the structure of neural networks with diagrams such as the following:

By taking in data points x, scaling them by constant weights wi,j , and passing them into
compositions of nonlinear functions called activation functions, neural networks can fit
arbitrarily complex data. Consider the following simple neural network expression:

fθ(x) = f2(w1,2f1(w0,1x)) (24)

Where f1, f2 are nonlinear activation functions. If θ = [w0,1, w1,2]
T , find an expression for

the gradient ∂fθ(x)
∂θ = ∇θfθ(x) in terms of ∂f1(x)

∂x , ∂f2(x)∂x . Hint: Apply chain rule.

4. In reinforcement learning, we collect data sets Sexp called experience data sets. These
contain (state, action, next state, reward) pairs of the form Sexp = {(st, at, st+1, rt)}.
Let’s fit a parameterized Q-function Qθ(s, a) to this data! Provide a brief worded expla-
nation as to why finding a set of parameters θ∗ that solve the optimization problem:

θ∗ = arg min
θ

1

|Sexp|
∑

(st,at,st+1,rt)∈Sexp

(rt + γmax
a′

Qθ(st+1, a
′)−Qθ(st, at))

2 (25)

Where |Sexp| is the number of (st, at, st+1, rt) data points, allows us to find a Qθ that
approximates the optimal Q-function. Note that the sum is performed over all pairs of
(st, at, st+1, rt) data in Sexp. Hints: Recall at the condition for an optimal Q-function:
E[rt + γmaxa′ Q

∗(st+1, a
′) − Q∗(st, at)] = 0. How is this condition reflected in the loss

function above? How does this compare to the l2 loss function?

4

Problem 3: Reinforcement Learning in Legged Robotics

A primary area of application for reinforcement learning is legged robotics! For quadrupedal
(four-legged) and bipedal (two-legged) robots, for example, neural networks prove to be excep-
tionally useful tools in modeling and dealing with complex dynamics.
Using the tools of reinforcement learning, we may develop strong control policies for legged
robot systems. Let’s gain some practice in applying reinforcement learning to a simple legged
robot system! In this question, we’ll develop a reinforcement learning controller for a simple
legged system called a half-cheetah.

Above: The half-cheetah model

This is a common benchmark system in reinforcement learning. Our goal is to make the half-
cheetah robot move from left to right in a smooth manner. Let’s learn about the tools we can
use to accomplish this task!

Questions

1. Go to the provided notebook and implement the reinforcement learning for legged robotics
module. Record the video generated by the simulator and attach a link to the video to
your solution.

5

Bonus: Write a Poem!

After a long semester, you’ve finally reached the end of 106B/206B! Congratulations! To cel-
ebrate your accomplishment, write a short poem about robotics, controls, or your experience
in this course. We’ll share our favorite poems with the class and give them some extra extra
credit. All types of poems are welcome! Note: You may not use LLMs such as Chat-GPT for
this question. The point of this question is to be creative and have a little bit of fun!

6

